

CATALOGUE

EXPLOSION-PROOF DISTRIBUTION BOXES

REV. 1

EX E

EX I

THE FIRST NATIONAL MANUFACTURER OF EXPLOSION-PROOF EQUIPMENT IN KAZAKHSTAN

the descent

EXPLOSION PROTECTION HISTORY	4
EXPLOSION FACTORS	5-6
EXPLOSION PROTECTION LEVELS	7-8
GAS ZONES	9
DUST ZONES	10
STANDARDIZATION	11
IP AND IK PROTECTION	12-13
MARKING OF EXPLOSION PROTECTION	14
TABLE OF ENCLOSURE SERIES	16-17
PART NUMBERING	18
POLYESTER ENCLOSURES	19-23
ALUMINUM ENCLOSURES	24-28
STAINLESS STEEL ENCLOSURES	29-34
CONTROLS	36-42
CABLE GLANDS AND ACCESSORIES	44-58

Explosion protection history and legal provisions

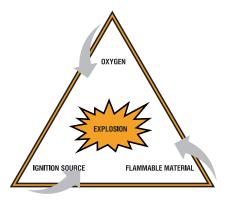
The first contribution to explosion safety was made in 1815 by the English chemist Sir Humphry Davy, who developed an oil lamp that prevented the spread of flames using a closelyspaced mesh screen. The elementary experiments carried out by Dr. Karl Beiling, a mining engineer, related to the special protection of electric motors and apparatus in coal mines against fire, became a decisive step in developing explosion protection.

The principles of designing devices to protect electrical machines, transformers, and switchgear against the effects of flame, published in 1912, were based on the results of these experiments.

The following types of protection have been adopted as protective measures:

Oil Immers	sion	ካ	
Closed Encaps	sulation	Η	Fire
Labyrinth Encar	osulation	╘	Fire Resistant Shel
Closed Mesh	Screen	┥	tant S
Wafer Encaps	ulation	Η	Shell
Flat Seam Enca	osulation	Ч	

Since 1924, incandescent lamps were only allowed to illuminate dangerous areas while the luminous element was hermetically sealed. Incandescent lamps had to be protected by durable glass, which closed the lamp socket tightly.


Light switches were to be installed outside hazardous areas, and in the event of a malfunction or lack of explosion-proof lighting, access to these places was allowed only with a protective lamp. Therefore, in general, electrical installations were not used in hazardous locations.

Machines with slip rings or commutators had to be designed so that the slip ring or commutator was closed and the enclosure was thoroughly purged under overpressure with outside air or suitable gas. The purging must begin before the machine is turned on, or the machine must be built into a fireproof enclosure. This requirement is applied to all places where explosive gas or vapor-air mixtures are present.

Base for the explosion

As a rule, for an explosion to occur in the ambient air, the simultaneous presence of three factors is necessary:

- Flammable material
- Oxygen/Air
- Ignition source
- In production and workplaces,

hazardous areas can occur wherever the first two conditions for an explosion are met. Typical dangerous regions are formed at:

- Chemical Plants
- Oil Refineries
- Enamel Factories
- Paint Workshops
- Sewage Disposal Plants

 Mills and stores for crushed products and other flammable dust

– In-tank installations and places where flammable gases, liquids, and solids are loaded

The first two factors – combustible agent and air – must be present in sufficient quantities to form an explosive atmosphere. Legislative definitions of explosion protection, arising from occupational health and safety regulations, apply to workplaces. For this reason, explosion protection is usually limited to describing reactions with oxygen in the air. Oxidation reactions are typically accompanied by an increase in heat and pressure and therefore meet the criteria for an explosion.

It is generally accepted that a volume of 10 liters of an explosive mixture in a confined space can cause harm, especially to people. For this reason, any area in which such a volume of an explosive mixture can collect is called a potentially explosive atmosphere.

EXPLOSION FACTORS

Oxygen

The amount of oxygen in the air can only oxidize/burn a certain amount of flammable material. This ratio can be determined theoretically; it is called the stoichiometric mixture. When the amount of flammable material and available atmospheric oxygen are close to the correct ratio, the effect of the explosion - the increase in temperature and pressure - is the strongest. If flammable material is too small, combustion will be difficult to propagate or stop altogether. A similar situation occurs when flammable material is too high for the amount of oxygen present in the air. All flammable materials have an explosive

range, depending on the available activation energy. This range is usually determined by igniting the mixture with an electric spark. The lower and upper explosive limits limit the explosive range, and this means that explosions do not occur below and above these limits. This fact can be exploited by sufficiently diluting combustible agents with air or preventing air/ oxygen from entering a part of the equipment. However, the latter option is not possible, or only viable with limitations, in an environment where people work regularly and therefore should be reserved for manufacturing equipment.

Inflammable substance

he flammable substance can be gaseous, liquid, or solid. Its reactivity with atmospheric oxygen is considered for a general discussion about workplaces.

• Flammable gases

The flammable gas may be an element such as hydrogen, which can be made to react with oxygen with very little additional energy. Flammable gases are often compounds of carbon and hydrogen, and these flammable gases and vapors require only small power to react with atmospheric oxygen.

Vapor is the part of the liquid (when it comes to explosion protection of flammable liquids) that has evaporated into the ambient air due to vapor pressure above the surface of the liquid, around a jet of this liquid or liquid droplets. Mist is a special kind of liquid that, because of its explosive behavior, in tandem with vapors, can be included to meet safety considerations.

Inflammable liquids (vapors)

Inflammable liquids are often hydrocarbon compounds such as ether, acetone, or naphtha. Even at room temperature, enough of them can go into the vapor phase so that an explosive atmosphere forms at their surface. Other liquids form such an atmosphere at their surface only at elevated temperatures. Under atmospheric conditions, this process is

strongly influenced by the temperature of the liquid.

For this reason, the flashpoint is an important consideration when handling inflammable liquids. The flashpoint refers to the lowest temperature at which an inflammable liquid, under specified test conditions, produces sufficient vapor on its surface for an effective ignition source to ignite the vapor-air mixture.

Flashpoint is essential for the classification of potentially explosive atmospheres. Inflammable liquids with a high flashpoint are less dangerous than those with a flashpoint at or below room temperature.

Spraying a flammable liquid can produce a mist consisting of tiny droplets with a massive surface area, like spray cans or automotive spray stations. Such vapor can explode, and in this case, the flashpoint is less critical. For a fine mist from an inflammable liquid, the behavior relevant to safety can be approximated from the known behavior of vapors.

Inflammable solids (dust)

Inflammable solids (dust or volatile particles) can react with atmospheric oxygen and produce catastrophic explosions. Usually, more energy is required to activate a blast in the air than in the case of gases and vapors. However, once combustion begins, the energy released by the reaction creates high temperatures and pressures. In addition to the chemical properties of the solid itself, the fineness of the particles and the total surface area play an important role, which increases with fineness. Properties are processes that occur directly on

the surface of a solid. Lighting and extinguishing a paraffin candle makes it possible to demonstrate several processes occurring in a solid material in a short period, which are not easily represented in a simplified form.

The experiment shows that when the wick of a candle is ignited, the paraffin melts, then evaporates, and this vapor feeds the flame. After the candle is extinguished, the paraffin fumes are still felt, the molten paraffin solidifies, and the paraffin fumes dissipate. The paraffin candle is now harmless again. Dust reacts differently depending on whether it is in a deposited dust layer or a suspended dust cloud. Layers of dust can begin to smolder on hot surfaces, while a cloud of dust ignited locally or on contact with a hot surface can explode immediately. Dust explosions are often the result of smoldering layers of dust that rise and can cause ignition. If such a layer is agitated, for example, by mechanical cleaning methods during transportation or incompetence extinguishing attempts, this can lead to a dust explosion.

A gas or vapor/air explosion can also stir up dust, which often results in a gas explosion occurring first, followed by a dust explosion. In deep coal mines, methane/flame explosions often caused coal dust explosions, the consequences of which were more severe than those of the initial flame explosion.

Ignition sources

A large number of ignition sources are possible using technological facilities.

Hot surfaces (5.3.2) result from energy losses in systems, equipment, and components during regular operation. In the case of heaters, they are desirable, and usually, these temperatures can be controlled.

In the event of a fault – for example, in an overload or tight bearings – the energy loss, hence the temperature, inevitably increases. Technological facilities should always be evaluated to see if it stabilizes, i.e., whether it can reach the final temperature or an unacceptable temperature rise is possible, which must be prevented by taking appropriate measures.

Examples: coils, resistors or lamps, hot equipment surfaces, brakes, or overheated bearings.

Flames and hot gases (including hot particles) (5.3.3) can be generated inside internal combustion engines or analyzed devices during regular operation and malfunction. Here, protective measures are required to

prevent them from leaving the housing for a long time.

Examples: exhaust gases from internal combustion engines or particulates that form as a result of sparks during switching circuit breakers and corrode the material of the circuit breaker contacts.

Electrical devices (5.3.5) should typically be suitable ignition sources. Only sparks of shallow energy with an energy of only microwatt seconds can be considered too weak to start an explosion.

For this reason, appropriate measures must be taken to prevent such ignition sources. Examples: sparks during switching, sparks on commutators, or slip rings.

SIGMA INDUSTRIES Busbars and other earthed voltage sources, such as electrical corrosion protection of equipment, can lead to stray electric currents cathodic protection (5.3.6), leading to a voltage difference between different grounding points. Therefore, it is necessary to provide a highly conductive connection to all electrically conductive parts of the equipment so that the voltage difference is reduced to a safe level. It does not matter whether the electrically conductive equipment is an electrical or non-electrical part of the installation, as the cause of the current may be outside the equipment.

Equipotential bonding must always be ensured, regardless of whether such currents are expected or not and whether their sources are known.

Regardless of the presence or absence of electric tension, electric sparks can be caused by **static electricity** (5.3.7). The stored energy can be released in sparks and serve as an ignition source. Since this ignition source can occur completely independently of the

electric tension supply, it must also be considered when working with nonelectrical devices and components. This is due to separation processes; therefore, it is necessary to evaluate the cases where this ignition source should be considered.

Friction during regular operation can cause an electrostatic charge. For example, portable devices cannot be grounded or connected to an equipotential bonding ring. A static charge may occur during regular operation when interacting with the wearer's clothing.

Prevent static electricity from becoming an ignition source by taking appropriate measures.

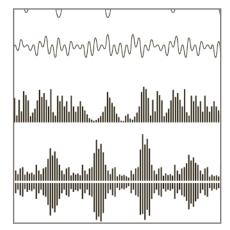
Examples: transmission belts of plastic materials, portable device housings, synthetic clothing material. Separation processes when rolling out paper or plastic film, plastic pipe systems.

Lightning (5.3.8) and a lightning strike can ignite an explosive atmosphere. Lightning invariably ignites an explosive atmosphere. However, there is also the possibility of ignition due to the high temperature reached by lightning.

Large currents flowing from a lightning strike can cause sparks near the strike.

Radiofrequency (RF) electromagnetic waves have a frequency of 104 Hz up to 3x1011 Hz. Among the ignition sources in which radiation energy affects an explosive mixture, the following should be highlighted:

Electromagnetic radiation – radio waves (5.3.9) Electromagnetic radiation – IR radiation, visible spectrum (5.3.10) Ionizing radiation – UV radiation (5.3.11)


Ultrasound (5.3.12)

Systems, devices, and components using radiation can be installed and operated in a hazardous area if their parameters are permanently and reliably limited, and this equipment is checked.

Examples: transmitting and receiving equipment, mobile phones, photoelectric beam barriers, and scanners.

Finally, **adiabatic compression and shock waves** (5.3.13) inside tubular structures operating under negative pressure can also become an ignition source.

Examples: rupture of a long fluorescent tube in a hydrogen atmosphere.

Primary explosion protection

Primary explosion protection aims to replace combustible agents or atmospheric oxygen with something else or reduce their quantity to such an extent that there is no danger of forming an explosive mixture. Increasing air circulation flushing air

through ventilation can be achieved by constructive measures, for example, open-plan gas stations where there is a minimal potentially explosive atmosphere.

Replacement of atmospheric oxygen is not possible in rooms where people work. For this reason, the measures available for such places are limited:

• Avoiding or limiting the use of combustible agents capable of forming an explosive atmosphere

 Preventing or limiting the release of combustible agents and thus the formation of the explosive mixture in and around the valve, e.g., by:
Limiting their concentration

- Using covers filled with an inert

Using covers mieu with an men

substance

- Natural or artificial ventilation

- Monitoring the concentration using a gas detection system which gives an alarm/shuts down the system

Secondary explosion protection

Suppose, despite primary explosion protection measures, a dangerous, potentially explosive atmosphere is likely to form (to the extent that actions are required to protect workers from combustible factors). In that case, the ignition of this hazardous, potentially explosive atmosphere must be effectively prevented. All possible ignition sources are evaluated, and appropriate protective measures are applied.

Effective ignition sources on equipment and installations can, for example, be prevented using protection appropriate to the level of protection required. The classification of potentially explosive areas into zones (frequency and duration of occurrence of a dangerous explosive atmosphere and local environmental conditions) serves as the basis for determining the level of protection of equipment. In addition, it is necessary to know the essential explosion characteristics for flammable materials (temperature classes, dust ignition temperatures, explosion sub-groups, etc.) and the local environmental conditions.

Explosion characteristics help the control operator accurately determine the risk in a given area, allow the equipment manufacturer to select the right solution for the work equipment, and finally oblige the installation engineer to select and assign suitable devices. Ultimately, this data is contained in the labeling of the device.

Tertiary explosion protection

If the primary and secondary explosion protection measures are insufficient, additional protection measures must be taken. Their purpose is to limit the explosion's impact and/or reduce it to a non-dangerous level. The most common actions to limit the hazardous

effects of an explosion are as follows: • Blast-resistant Design: containers, apparatuses, pipelines are built in such a way as to be resistant to pressure shocks to withstand the explosion inside.

• Blast Relief: rupture discs or blast flaps are installed that open in a safe direction in the event of an explosion and ensure that the plant is not subjected to a load that exceeds its blast resistance.

• Explosion Suppression and Explosion

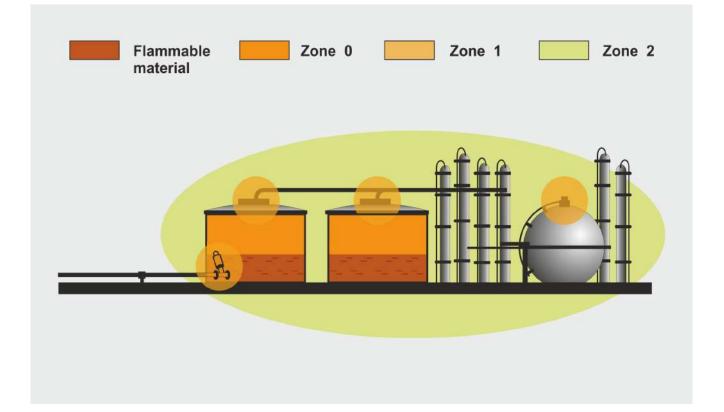
Propagation Prevention: explosion suppression systems prevent reaching maximum explosion pressure by quickly injecting extinguishing agents into containers and installation. Explosive decoupling limits possible explosions to individual parts of the installation.

Relevance and benefits of zone classification in the workplace

The practice of dividing potentially explosive atmospheres into zones has developed. This classification considers the various hazards from explosive atmospheres and allows explosion protection measures to be taken that reflect safety engineering and economic efficiency. For the European Community, zone definitions are uniformly presented in Directive 2014/34/EU, and it should be applied with a technical understanding of the particular situation.

Potentially explosive atmospheres are classified into zones depending on the frequency and duration of the explosive atmosphere. Many details and influencing factors must be considered to classify the zones in a particular case.

IEC 60079-10-1 assumes a roughly similar classification for gases and vapors, also applying to future facilities built to US NEC 505. IEC 60079-10-2 provides support for classifying areas with dust.


Potentially hazardous areas are classified according to the frequency and duration of the explosive atmosphere. This classification defines the scope of the measures to be taken under Section A of Annex II of Directive 2014/34/EU in conjunction with Annex I of Directive 2014/34/EU.

In workplaces, potentially explosive atmospheres are usually classified as zones 1 and 2, 21 and 22. Zones 0 and 20 are limited to tiny inaccessible areas in workplaces or are typically limited to the interior of technological facilities.

Notes:

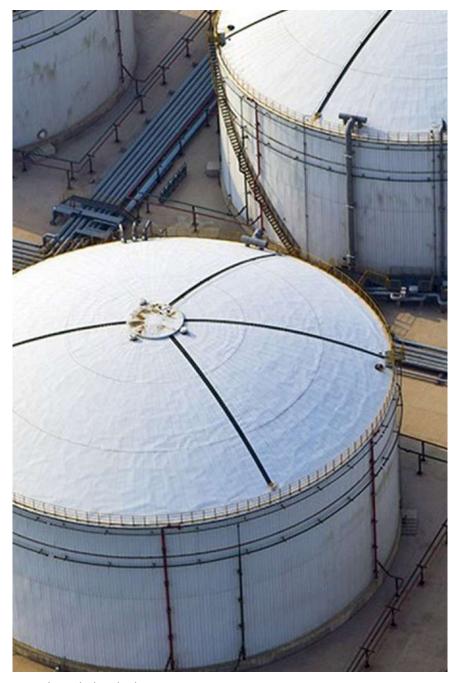
Under atmospheric conditions, an explosive atmosphere is a mixture of air and inflammable substances in gases, vapors, mists, or dust. After ignition, combustion spreads to the entire unburned mixture.

A dangerous explosive atmosphere is an explosive atmosphere that causes damage in an explosion and requires introducing measures to protect workers from combustible factors.

Gases, vapors

Zone 0

A zone in which an explosive atmosphere consisting of a mixture of air with inflammable substances in the form of gas, vapor, or mist is present continuously or for a long time or frequently (EN 60079-10-1).


Zone 0 mainly covers the interior of closed containers, pipes, and apparatus containing inflammable liquids. Here, the corresponding operating temperature is above the ignition point, and the danger zone is above the surface of the liquid, not in it.

Most gases of flammable liquids are heavier than air and propagate similarly to liquids. In cavities such as the pump's pit and sump, these explosive gases can usually reside for a longer time, so it is necessary to reckon on Zone 0 here.

In Zone 0 equipment, ignition sources must be protected from an explosion, even if failures are infrequent.

In the event of failure of one type of protection or simultaneous occurrence of two faults, sufficient explosion protection must be provided.

According to the design requirements of DIN EN 60079-26 (VDE 170/0171/ Part 12-1), the necessary explosion protection is achieved if the equipment is designed under the type of protection "ia" according to EN 60079-11, Intrinsic safety, or satisfies the requirements of two types of protection series EN 60079, which operate independently of each other.

For this reason, for example, flameretardant luminaires were additionally hermetically sealed or intrinsically safe devices in protection type "ib" in pots.

According to Directive 014/34/EU, equipment for Zone 0 must meet the requirements of category 1G. In Zone 0, the risk of ignition due to electrostatic charges, even in rare cases, must be reliably excluded. For this reason, the requirements of EN 0079-0 for equipment for use in Zone 0 are significantly higher than those for equipment for Zone 1.

Zone 1

A zone in which an explosive gaseous atmosphere consisting of a mixture of air with inflammable substances in the form of gas, vapor, or mist may occur from time to time during regular operation (EN 60079-10-1).

In Zone 1, inflammable or explosive substances are produced, processed, or packaged. This includes proximity to loading hatches or filing and unloading devices, fragile equipment, pipes, and glands on pumps and guides that are not adequately sealed. A flammable concentration is likely to occur during regular use.

Ignition sources that occur during regular, trouble-free operations and those that usually happen during malfunctions must be reliably prevented. The chapter "Electrical equipment for use in hazardous areas" describes the individual types of protection. According to Directive 2014/34/EU, Zone 1 equipment must meet the requirements of category 2G.

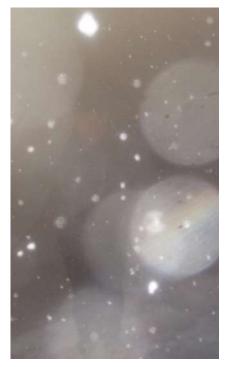
Zone 2

A zone in which an explosive atmosphere consisting of a mixture of air with inflammable substances

www.sigma-industries.kz

in the form of gases, vapors, or mists is unlikely to occur during regular operation and, if it does happen, will persist for only a short period (EN 60079-10-1).

Zone 2 includes areas around Zones 0 and 1 and areas around flanged connections on pipes in enclosed spaces. In addition, it has locations in which, due to natural or forced ventilation, the lower explosive limit is reached only in exceptional cases, for example, in the environment of outdoor installations. In Zone 2, inflammable or combustible substances are produced or stored. The probability of an explosive concentration occurring is rare, and if it happens, it only lasts for a short time.


During regular, uninterrupted operation, ignition sources must be reliably prevented. According to Directive 2014/34/EU, equipment for Zone 2 must meet the requirements of category 3G. In addition, of course, any equipment that meets the requirements for equipment for use in Zones 0 and 1 are allowed.

Dust

Zone 20

A zone in which an explosive atmosphere in the form of a cloud of flammable dust is constantly present, or for a long time, or frequently (EN 60079-10-2).

Zone 20 generally covers areas inside closed containers, pipes, and apparatuses in which flammable dust in the form of a cloud is present constantly or for a long time or often. When using equipment for Zone 20, ignition sources must be protected from an explosion, even if the

malfunction is rare. For this reason, the equipment must meet the following requirement:

In case of failure of one type of

protection or simultaneous occurrence of two faults, adequate explosion protection must be provided. According to directive 2014/34/EU, equipment for use in Zone 20 must meet the requirements of category 1D.

Zone 21

A zone in which an explosive atmosphere in the form of a cloud of flammable dust in the air may occasionally occur during regular operation (EN 60079-10-2).

Zone 21 includes, among other things, mills, coal supplies or grain stores, and the area around gas stations. Here, for example, explosive dust clouds can occur due to the periodic emission of dust from the hole. The risk of danger due to dust deposits is often underestimated.

Explosive dust-air mixtures can be formed due to the formation of a glow nest or low-temperature carbonization gas and a result of deflagration of lowtemperature carbonization gas, gas, or dust swirling caused by a smoldering fire.

Ignition sources that occur during regular, trouble-free operation and sources that generally happen in the event of malfunctions must be reliably prevented.

The individual types of protection are described in the chapter "Electrical equipment for se in hazardous areas." According to Directive 2014/34/EU, equipment for Zone 21 must meet the requirements of category 2D.

Zone 22

A zone in which an explosive atmosphere in the form of a cloud of flammable dust in the air is unlikely to occur during regular operation, and it persists only for a short period (EN 60079-10-2).

Under normal operating conditions, zone 22 is unlikely to form an explosive dust/air mixture, and an explosive atmosphere can only be expected in malfunctions, for example, due to whipped dust. During regular, uninterrupted operation, ignition sources must be reliably prevented. According to Directive 2014/34/EU, equipment for zone 22 must meet the requirements of category 3D.

Dust reacts differently depending on whether it is in a deposited dust layer or a suspended dust cloud. Layers of dust can begin to smolder on hot surfaces, while a cloud of dust

ignited locally or on contact with a hot surface can explode immediately. Dust explosions are often the result of smoldering layers of dust that rise and can cause ignition. If such a layer is agitated, for example, by mechanical cleaning methods during transport or incompetence extinguishing attempts, this can lead to a dust explosion.

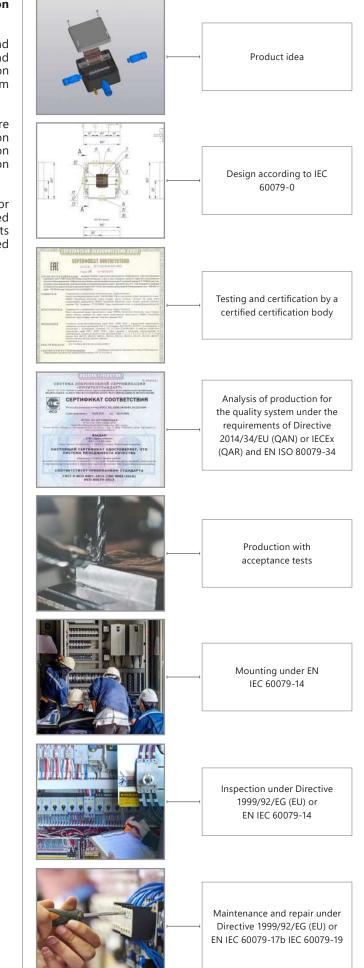
A gas or vapor/air explosion can also stir up dust, which often results in a gas explosion occurring first, followed by a dust explosion. In deep coal mines, methane/flame explosions often caused coal dust explosions, the consequences of which were more severe than those of the initial flame explosion.

Notes:

1. Layers, deposits, and piles of fuel must be treated like any other source that may form an explosive atmosphere.

2. Normal operation means using the installations within their design parameters.

3. Explosive atmosphere definitions comply with EU directives and EN standards.


Principles and rules for the prevention of ignition sources in electrical devices

As a rule, all the hazards arising from gases, vapors, and dust are formed according to the same chemical and physical laws and processes. In this regard, the prevention of these dangers should be carried out according to uniform principles.

At present, uniform principles, rules, and requirements are prescribed by the International Electrotechnical Commission (IEC), the European Committees for Standardization CENELEC and CEN, and the Eurasian Economic Commission (EEC).

All participants from the manufacturer to the operator accept the obligation to comply with all standards adopted for explosion protection. Compliance with all requirements and measures is entrusted to the authorities and certified certification bodies.

SIGMA INDUSTRIES

EQUIPMENT GROUP	EXPLOSION PROTECTION LEVEL	CLASS AREA
I – Equipment intended for use in	Ма	The explosive gas mixture is present continuously or for an extended period
underground workings of mines, mines and in their ground structures, hazardous by firedamp	Ma	There is a possibility of the presence of an explosive gas mixture under normal operating conditions
ll – Equipment intended for use in potentially	Ga	0 – Explosive gas mixture is present continuously or for an extended period
hazardous environments, except for underground workings of mines, mines	Gb	1 – There is a possibility of the presence of an explosive gas mixture under normal operating conditions
and their ground structures hazardous by firedamp	Gc	2 – It is unlikely that an explosive gas mixture is present under normal operating conditions, and if it occurs, it is rare and exists for a short time
	Da	20 – An explosive atmosphere in the form of a cloud of flammable dust in the air is present continuously, frequently, or for an extended period
III – Equipment intended for use in potentially explosive dust atmospheres, except for underground workings of mines, mines and their ground structures, hazardous due to	Db	21 – Occasionally, an explosive atmosphere in the form of a cloud of flammable dust in the air is likely to occur during regular operation
mine dust		22 – An explosive atmosphere in the form of a cloud of flammable dust in the air during the normal process is unlikely, but if flammable dust appears, it persists only for a short period

TYPES OF EXPLOSION PROTECTING OF ELECTRICAL EQUIPMENT							
Protection method	Labeling	Zone	Principe of protection	Standard			
	e	1	Elimination of spark or elevated temperature, arc discharges	EN IEC 60079-7			
	d	1	The spread of explosions into the external environment is excluded.	EN IEC 60079-1			
- L HYZEDOLE	ia	0					
	Limitation of spark energy or temperature increase arc	EN IEC 60079-11					
Veo 🗸	ic	2					

	EQUIPMENT EXPLOSION PROTECTION LEVEL	
2	Electrical equipment of increased reliability against explosion: explosion protection is provided only in regular operation	Zone 2
1	Explosion-proof electrical equipment: explosion protection is ensured both under normal operating conditions and in case of probable damage depending on the operating conditions, except for damage to the means that provide their explosion protection	Zone 1
0	Especially explosion-proof equipment, in which special measures have been taken and explosion protection equipment	Zone 0

1 Ex		C T 5	Gb	X	Special requirements prescribed in the certificates of conformity and in the instructions for use
	7				
►		TEMPER	ATURE GRADES		
	T1 < 450°C				
	T2 < 300°C				
GAS GROUP	T3 < 200°C				
	T4 < 135°C				
	T5 < 100°C				
	T6 < 85°C				
IIA IIB IIC	Ammonia 630°C	1,2 Dichloroethane 440°C	Gasoline 220-300°C	Acetaldehyde 140°C	
	Carbon monoxide 605°C	Ethylbenzene 431°C	Diesel oil 220-300°C	Triethylamine 190°C	
	Phenol 595°C	Ethanol 400°C	Mazut 220-300°C		
	Methane 595°C	Nitromethane 415°C	Aviation fuel 220-300°C		
	Benzene 555°C	Trichlorethylene 410°C	Naphthalene 540°C		
	Acetone 535	Metilamine 408	Kerosene 288°C		
	Ethane 515°C	Ethylenediamine 382°C	Turpentine 254°C		
	Acetic acid 485°C	Amyl acetate 380°C	Hexane 230°C		
	Propane 470°C	Butane 365°C	Heptane 215°C		
	Xilen 464°C	Butanol 340°C	Octane 205°C		
	Ethyl acetate 470°C	Amyl spirit 300°C	Nonan 205°C		
	Methanol 440°C				

Coal gas 560°C	Ethylene oxide 45°C	Hydrosulfide 270°C	Dibutyl ether 185°C	
Hydrocyanic acid 538°C	Ethylene 440°C	Ethylene glycol 235°C	Diethylene ether 175°C	

	Formaldehyde 424°C	Tetrahydrofuran 224°C	Dipropyl Ether 170°C	
Hydrogen 560°C	Acetylene 305°C			Carbon disulphide 95°C

IP Protection IEC 60529

IP Code marking is a systematization of the values of the protection of the electrical appliances and electrical equipment enclosure under the influence of various adverse conditions, such as the humidity effects, open liquid ingress, dust, pollution, and the impact of different environments. IK Protection EN 62262

Protection against solid objects	IP	хх	Protection against water
No protection	0	0	No protection
Protected against particles with a diameter of ≥50 mm	1	1	Protection against condensate moisture, raindrops falling strictly in a vertical position
Protection against particles with a diameter of ≥12.5 mm	2	2	Drip-proof, angle of incidence up to 15°
Protection against particles with a diameter of ≥2.5 mm	3	3	Drip-proof, angle of incidence up to 60°
Protection against particles with a diameter of ≥1 mm	4	4	Protection against drops of liquid of any direction
Complete protection against foreign objects of any size, partial protection against dirt and dust	5	5	Protection against short exposure to a flow (jet) of liquid of random direction
Complete protection against various objects, total particles confinement	6	6	Protection of the housing from prolonged exposure to a strong flow of liquid (water) of accidental direction
		7	Protection against moisture impregnation inside the equipment case during short-term immersion in liquid (water) to a depth of 1 m
		8	Protection against wicking of liquid into products when immersed to a specified depth for a specified period
		9	Protection against ingress of hot water jet under pressure into the products

IK Protection EN 62262

The IK index is another international standardization that will be responsible for the ability of the device design to withstand kinetic energy and various kinds of mechanical damage. This value indicates how strong the shell is. Equipped with a durable case made of an alloy of metal and polymer, which guarantees a high level of protection. As in the previous case, standardization has a digital index, which has a protection level from 00 to 10.

ік-хх	Impact energy	Species Exposure conditions
00	٢ 0	No protection
01	0.15 J	A drop of a load weighing 200 g from a height of 7.5 cm
02	0.20 J	A drop of a load weighing 200 g from a height of 10 cm
03	0.35 J	A drop of a load weighing 200 g from a height of 17.5 cm
04	0.50 J	A drop of a load weighing 200 g from a height of 25 cm
05	0.70 J	A drop of a load weighing 200 g from a height of 35 cm
06	1 J	A drop of a load weighing 500 g from a height of 20 cm
07	2 J	A drop of a load weighing 500 g from a height of 40 cm
08	5 J	A drop of a load weighing 1700 g from a height of 29.5 cm
09	10 J	A drop of a load weighing 5000 g from a height of 20 cm
10	20 J	A drop of a load weighing 5000 g from a height of 40 cm

JUNCTION BOXES

DATA
Material
Surface
Gasket
Minimum size, mm
Maximum size, mm
IP
Temperature conditions
Mechanical strength
Fasteners

SIM_	P S	TAN	DAR	D S	ERIES	5

Glass fiber reinforced thermoset polyester

Surface tension < 109 Ω IEC 60093

Silicone

70×80×56

405×400×200

IP 66

-60 °C ~ +90°C

7 J

SIM_P OCTA SERIES
Glass fiber reinforced thermoset polyester
Surface tension < 109 Ω IEC 60093
Silicone
81×81×75
200×200×125
IP 66
-60 °C ~ +90°C
7 J

Compliancies
TP TC (EAC)
ATEX
IECEx
Features

EAЭC RU C-KZ.HA65.B.01196/21W		
2022		
2022		

EAЭC RU C-KZ.HA65.B.01196/21W
2022
2022

SIM_A СЕРИЯ STANDARD

Aluminum DIN EN 1706 EN AC-Asli 12 (Fe)
Powder coating
Silicone
64×58×34
600×600×202
IP 66
-60 °C ~ +90°C
7 J

SIM_S СЕРИЯ STANDARD
Stainless steel AISI 316L
Electropolished, mirror-finished
Silicone
120×120×80
250×400×130
IP 66, IP 67
-60 °C ~ +100°C

7 J

SIM_S СЕРИЯ ТВ

Stainless steel AISI 316L
Electropolished
Silicone
229×152×133
980×740×200
IP 66, IP 67
-60°C +135°C (IP 66) -60°C +105°C (IP 67)
7 J

EAЭC RU C-KZ.HA65.B.01196/21W		
2022		
2022		

EAЭC RU C-KZ.HA65.B.01196/21W


2022

2022

C-channel TAS 20 Welded mounting feet Grounding studs in the enclosure

EAЭC RU C-KZ.HA65.B.01196/21W
2022
2022
Lid hinges
Removable cover
Gland plates
Welded mounting feet
Padlock Mount

EX E DEVICES SERIES			
SIM T	SIM B	SIM C	
a series of devices for connecting and distributing various circuits of control systems and other systems	a series of devices for connecting and distributing various circuits of control systems and other systems using intrinsically safe electrical equipment installed in a enclosure (shell)	series of devices for indication and contro in control systems and other systems	

Advantages

* Heat resistant

* Chemically resistant

* Corrosion resistant

* Surface resistance < 10 Ω

EXPLOSION PROTECTION			
Marking (EN 60079-0)	ll 2G Ex e llC T6÷T4 Gb ll 2D Ex tb llIC T85°C/T100°C/T135°C Db		
Certificates	TC RU C-DE.AA87.B.00971 PTB 01 ATEX 1061 U IECEX PTB 08.0003U		
SPECIFICATIONS			
Material	glass fiber reinforced thermoset polyester		
Color	RAL 9011 graphite black		
Gasket	Silicone		
Ingress protection (EN 60079-0)	IP 66		
Mechanical strength (EN 60079-0)	7 J		

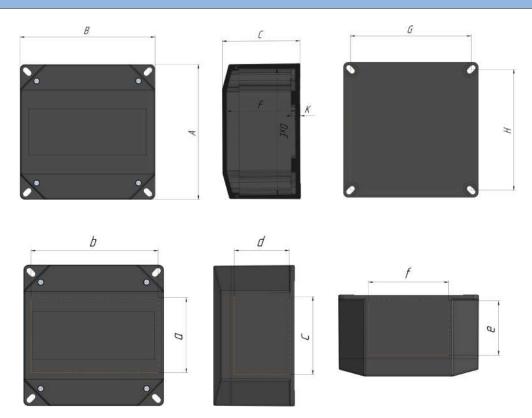
The enclosure material is resistant to petroleum pollution, oils, aromatic hydrocarbons, bacteria, enzymes, impacts and has a long service life.

The enclosure of the polyester product is enriched with carbon, which helps reduce the surface resistance of the material and therefore reduces the risk of static electricity.

The sealing system at the junction of the lid and the enclosure makes it possible to operate in a maritime climate and cases of fire extinguishing systems activating. All fasteners are made of stainless steel AISI304 (AISI316L), which guarantees high reliability of fastening.

Polyester enclosures are today a contemporary and more cost-saving solution to various electrical problems and act as junction boxes, enclosures for monitoring and metering devices, control and security systems, and distribution systems.

Polyester has a low coefficient of thermal expansion



TANDARD SERIES

SERIES OCTA

SIZE RANGE

D

 Е

F

Enclosure code	Fig.	Α	В	с
SIMP-080806	I	80	75	56
SIMP-080807	11	81	81	75
SIMP-080808	I	80	75	75
SIMP-081106	I	110	75	56
SIMP-081108	I	110	75	75
SIMP-081606	I	160	75	56
SIMP-081608	I	160	75	75
SIMP-081906	I	190	75	56
SIMP-081908	I	190	75	75
SIMP-082306	I	230	75	56
SIMP-082308	I	230	75	75
SIMP-121209	I	122	120	91
SIMP-121208	11	121	121	75
SIMP-122209	I	220	120	91
SIMP-161609	I	160	160	91
SIMP-161609	11	161	161	93
SIMP-162609	I	260	160	91
SIMP-163609	I	360	160	91
SIMP-165609	I	560	160	91
SIMP-252612	I	255	250	121
SIMP-252616	I	255	250	161
SIMP-254012	I	400	250	121
SIMP-254016	I	400	250	161
SIMP-256012	I	600	250	121
SIMP-361815	I	360	360	91
SIMP-414016	I	400	405	121
SIMP-414020	I	400	405	200

151	6	6	65		
181	6	6	46		
181	6	6	65		
221	6	6	46		
221	6	6	65		
113	11	11	80		
111	11	11	65		
211	11	11	80		
148	14	18	79		
151	15	51	82.5		
248	14	18	79		
348	14	18	79		
348	14	18	79		
243	23	38	109		
243	23	38	149		
388	23	38	109		
388	23	38	149		
588	23	38	109		
348	34	18	79		
393	38	38	109		
393	38	38	189		
c			d		
27			24.5		
39.5			49.5		
27			53.5		
27			24.5		
27			53.5		
33			24.5		
33			53.5		
33			24.5		
33			53.5		
33		24.5			
33		53.5			
57		48			
69.5			49.5		
56			48		
80			52		
109.5			62		
80			52		
80			52		
80			52		
166			77		
166			77.5		
			78		
166			78		
166 166					
			78		
166					
166 168			78		

G	н	к
45	59	5
69	69	5
45	59	5
45	89	5
45	89	5
45	139	5
45	139	5
45	169	5
45	169	5
45	218	5
45	218	5
82	106	5
100	100	5
82	204	5
110	140	6
140	140	5
110	240	6
110	340	6
110	540	6
200	227	6
200	227	6
200	372	6
200	372	6
200	580	6
310	340	6
380	355	6
380	355	6

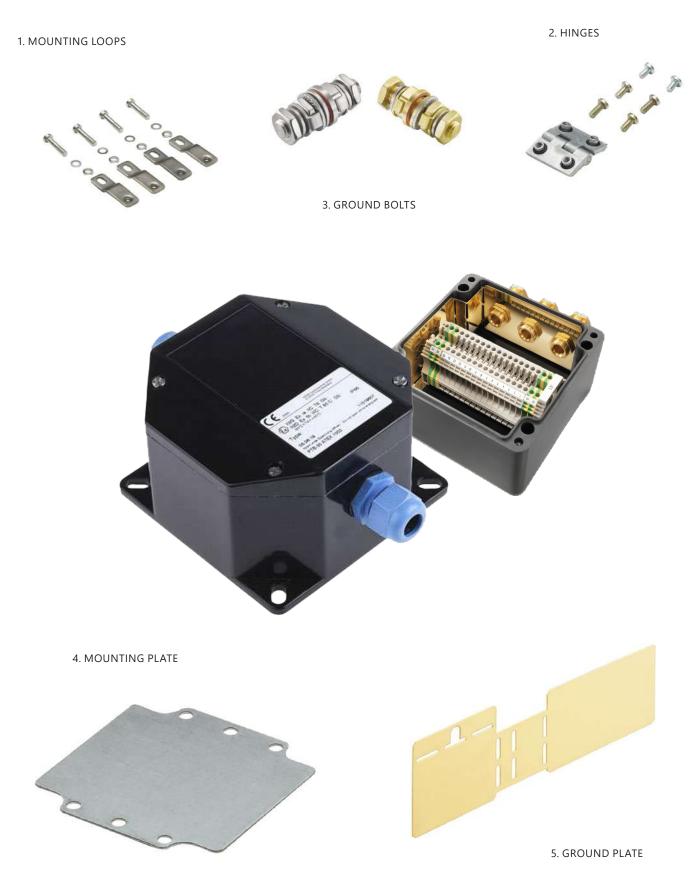
Enclosure code	Fig.
SIMP-080806	I
SIMP-080807	П
SIMP-080808	I
SIMP-081106	I
SIMP-081108	I
SIMP-081606	I
SIMP-081608	I
SIMP-081906	I
SIMP-081908	I
SIMP-082306	I
SIMP-082308	I
SIMP-121209	I
SIMP-121208	11
SIMP-122209	I
SIMP-161609	I
SIMP-161609	11
SIMP-162609	I
SIMP-163609	I
SIMP-165609	I
SIMP-252612	I
SIMP-252616	I
SIMP-254012	I
SIMP-254016	I
SIMP-256012	I
SIMP-361815	I
SIMP-414016	I
SIMP-414020	1
L	

а	b
46	57
66	34.5
46	57
76	57
76	57
126	57
126	57
156	57
156	57
196	57
196	57
78	100
106	64.5
176	100
108	135
146	104.5
208	135
308	135
508	135
202	225
202	225
345	225
345	220
545	225
314	284
345	375
345	375

c	d
27	24.5
39.5	49.5
27	53.5
27	24.5
27	53.5
33	24.5
33	53.5
33	24.5
33	53.5
33	24.5
33	53.5
57	48
69.5	49.5
56	48
80	52
109.5	62
80	52
80	52
80	52
166	77
166	77.5
166	78
166	78
168	78
290	79
321	76.5
321	155.5

е	f
32	47
49.5	39.5
52	47
33	77
52	77
33	127
52	127
33	157
52	157
33	88×2
52	88×2
57	79
49.5	69.5
57	177
60	110
62	109.5
60	210
60	310
60	238×2
85	205
85	205
85	348
85	348
85	258×2
79	320
85	348
164	348

www.sigma-industries.kz


MAXIMUM NUMBER OF TERMINALS AND CABLE GLANDS

Enclosure code	Fig.		Terminal cross-section Side A/B Side C/						Side A/B			, 					
Enclosure code	rig.	2,5	4	6	10	16	35	1	2	3	4	5	1	2	3	4	
SIMP-080806	1	4*						2	1				1				
SIMP-080807	2	5*						1	1				1	1			
SIMP-080808	1	4*						4	1	1			2	1	1		
SIMP-081106	1	11*	9*					2	1				1				
SIMP-081108	1	11*	9*					6	2	2			1	1	1		
SIMP-081606	1	20*	17*					4	3				1				
SIMP-081608	1	20*	17*					8	3	2			2	1	1		
SIMP-081906	1	26*	21*					5	4				1	1			
SIMP-081908	1	26*	21*					12	5	3			2	1			
SIMP-082306	1	34*	29*					8	4				1	1			
SIMP-082308	1	34*	29*					12	6	4			2	1	1		
SIMP-121209	1	13	11	8	6			2	1				2	1			
SIMP-121208	2	12	9	7				4	2	1	1		4	2	1	1	
SIMP-122209	1	33	28	21	16			12	6	3	2		4	2	1	1	
SIMP-161609	1	21	18	13	11	9		9	6	3	2	2	6	3	2	1	
SIMP-161609	2	18	13	11	9			5	2	2			5	2	2		
SIMP-162609	1	41	34	26	21	17		17	11	5	3	3	6	3	2	1	
SIMP-163609	1	60	50	38	30	25		26	16	7	5	4	6	3	2	1	
SIMP-165609	1	102	85	63	51	42		40	24	12	8	6	6	3	2	1	
SIMP-172714	3	44	37	28	22	18		22	12	8	3	3	12	6	4	2	
SIMP-252612	1	78	64	50	20	16	12	24	12	8	4	3	18	10	7	3	
SIMP-252616	1	78	64	50	20	16	12	24	12	8	4	3	18	10	7	3	
SIMP-254012	1	136	114	86	34	29	21	42	21	14	7	5	18	10	6	3	
SIMP-254016	1	136	114	86	34	29	21	42	21	14	7	5	18	10	6	3	
SIMP-256012	1	216	180	136	54	45	34	36	30	12	6	4	18	10	7	3	
SIMP-272714	3	76	64	48	38	16	12	22	12	8	3	3	22	12	8	3	
SIMP-275414	3	184	154	116	92	38	29	22	12	8	3	3	22	12	8	3	
SIMP-361815	1	53	45	34	27	22	18	26	16	7	5	4	20	10	6	5	
SIMP-414016	1	204	171	129	68	58	21	42	21	14	7	5	36	18	13	6	-
SIMP-414020	1	204	171	129	68	58	21	88	45	28	17	12	77	43	26	15	-

THREAD TABLE										
Code	1	2	3	4	5					
ISO 965/I	M20	M25	M32	M40	M50					
ASA B2.1	1⁄2″ NPT	3⁄4″ NPT	1″ NPT	11⁄4″ NPT	11⁄2″ NPT					

ACCESSORIES

Advantages

* Heat resistant

* Corrosion resistant

* Chemically resistant to acetone,

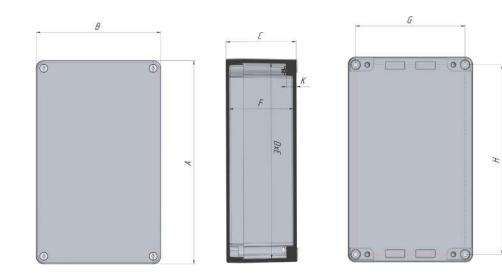
ammonia, gasoline, benzene and fuel oil

EXPLOSION PROTECTION							
Marking (EN 60079-0)	II 2G Ex e IIC T6÷T4 Gb II 2D Ex tb IIIC T85°C/T100°C/T135°C Db						
Certificates	TC RU C-DE.AA87.B.00971 PTB 98 ATEX 3101 U IECEx PTB 08.0005U						
SPECIFICATIONS							
Material	aluminum die casting DIN EN 1706 EN AC-AlSi 12 (Fe)						
Color	RAL 7001, powder-coated silver white						
Gasket	Silicone						
Ingress protection (EN 60079-0)	IP 66						
Mechanical strength (EN 60079-0)	7 J						

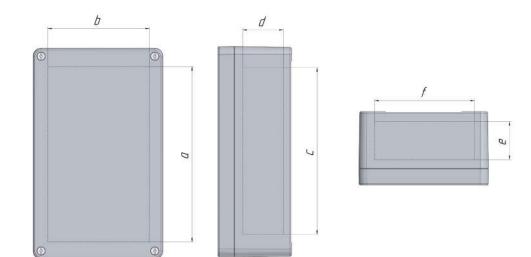
Aluminum alloy is the most suitable for maximum corrosion resistance in aggressive environments, especially in atmospheres saturated with salt, hydrogen sulfide, and other chemicals. The hulls are coated with gray epoxy paint.

The wall thickness makes it possible to drill threaded holes in the enclosure walls for connecting cable glands. Since aluminum is an excellent conductor, grounding for cable glands is provided through contact with the enclosure wall without additional measures to ensure the continuity of the ground circuit.

Aluminum products have proven to solve various electrical problems in the sealing and shielding of electronic and pneumatic components and modules.



Aluminum has a low density (2.7 g/ cm3) with relatively high strength characteristics


		SIZE RA	ANGE						
Enclosure code	A	В	с] [D	E	F]	
SIMA-080806	75	80	57		67	72	51		
SIMA-081306	125	80	57		117	72	51		
SIMA-081806	175	80	57		167	72	51		
SIMA-082505	250	80	52	1 [242	72	45		
SIMA-101008	100	100	81		92	92	74		
SIMA-101608	160	100	81	1 [152	92	74		
SIMA-102008	200	100	81	1 [192	92	74		
SIMA-121208	122	120	81	1 [113	111	72		
SIMA-121209	122	120	91	1 [113	111	82		
SIMA-122208	220	120	81	1 [211	111	72		
SIMA-122209	220	120	91	1 [211	111	82		
SIMA-123608	360	120	81	1 [351	111	72		
SIMA-141409	140	140	91	1 [131	131	85		
SIMA-142009	200	140	91		191	131	85		
SIMA-161609	160	160	91		151	151	82		
SIMA-162609	260	160	91	1 [251	151	82		
SIMA-163609	360	160	91	1 [351	151	82		
SIMA-165609	560	160	91		551	151	82		
SIMA-181810	180	180	101		171	171	92		
SIMA-182810	280	180	101		271	171	92		
SIMA-231011	100	230	111		89	220	101		
SIMA-232011	202	232	111	1 1	160	222	102		
SIMA-232018	202	232	181	1 1	160	222	170		
SIMA-232811	280	230	111	1 1	240	221	102		
SIMA-233311	330	230	111	1 1	289	220	102		
SIMA-233318	330	230	181	1 1	289	220	170		
SIMA-234011	400	230	111	1 1	360	220	102		
SIMA-234023	400	230	225	1 1	359	219	214		
SIMA-236011	600	230	111	1 1	588	218	100		
SIMA-314011	404	313	111	1 1	242	303	101		
SIMA-314014	403	312	141	1	242	300	129		
SIMA-314018	404	313	181	1	242	303	169		
SIMA-314023	404	313	227	1	243	300	216		
SIMA-316011	600	313	111	1	588	298	99		
SIMA-316018	600	310	181	1 [588	298	169		
SIMA-606020	600	600	202	1	588	588	189		

www.sigma-industries.kz

	SIZE	RANGE					
Enclosure code	а	b]	c	d	e	f
SIMA-080806	41	62	1	22	36	25	32
SIMA-081306	91	62	1	72	36	25	32
SIMA-081806	141	62	1	122	36	25	32
SIMA-082505	216	62	1	217	34	23	32
SIMA-101008	66	82	1	67	53	44	52
SIMA-101608	126	82	1	127	53	44	52
SIMA-102008	166	82	1	167	53	44	52
SIMA-121208	100	78	1	79	53	44	56
SIMA-121209	100	78	1	79	53	44	56
SIMA-122208	100	176	1	177	53	44	56
SIMA-122209	100	176	1	177	53	44	56
SIMA-123608	100	316	1	317	53	44	56
SIMA-141409	120	96	1	97	53	44	76
SIMA-142009	120	156	1	157	53	44	76
SIMA-161609	135	108	1	80	52	60	110
SIMA-162609	135	208	1	80	52	60	210
SIMA-163609	135	308	1	80	52	60	310
SIMA-165609	135	508	1	80	52	60	238×2
SIMA-181810	155	128	1	147	63	53	132
SIMA-182810	155	228	1	247	63	53	132
SIMA-231011	196	82	1	197	53	44	52
SIMA-232011	147	202	1	150	81	75	150
SIMA-232018	147	202	1	150	150	144	150
SIMA-232811	225	200	1	228	81	75	148
SIMA-233311	275	200		278	81	75	148
SIMA-233318	275	200		278	151	145	148
SIMA-234011	345	200	1	348	81	75	148
SIMA-234023	345	200		348	195	189	148
SIMA-236011	545	200	1	258×2	81	75	148
SIMA-314011	349	283	1	352	82	72	229
SIMA-314014	349	283	1	352	112	102	229
SIMA-314018	349	283]	352	152	142	229
SIMA-314023	349	283]	352	207	197	229
SIMA-316011	545	280	1	548	82	72	216
SIMA-316018	545	280	1	548	152	142	216
SIMA-606020	545	570		548	153	143	516

MAXIMUM NUMBER OF TERMINALS AND CABLE GLANDS

		Terminal cross-section							Side A/B	3		Side C/D					
nclosure code	2,5	4	6	10	16	35	1	2	3	4	5	1	2	3	4	5	
A-080806	4	3					1	1				2	1				
A-081306	14	11					3	2				2	1				
A-081806	23	20					5	3				2	1				
A-082505	38	32					8	5				2	1				
01008	9	7					5	2	1			3	1	1			
1608	20	17					10	4	3			3	1	1			
2008	28	24					12	5	3			3	1	1			
21208	13	11	8				4	2	1			4	2	1			
09	13	11	8	6			4	2	1			4	2	1			
122208	33	27	21	16			12	5	3			4	2	1			
-122209	33	27	21	16			14	6	4			4	2	1			
A-123608	61	50	38	30			24	10	7			4	2	1			
A-141409	16	13	10	8			8	3	2			4	2	1			
-142009	28	23	17	14			12	5	3			4	2	1			
-161609	20	17	13	10			9	5	3	2	2	6	3	2	1		
162609	40	33	25	20			17	10	5	3	3	6	3	2	1		
3609	61	50	38	30			24	15	7	5	4	6	3	2	1		
65609	100	84	63	50			40	24	12	8	6	6	3	2	1		
310	24	20	15	12	10		11	6	3	2	2	8	3	2	2		
82810	44	37	28	22	18		18	11	5	4	3	8	4	2	2		
31011							6	3	2	1	1	17	8	5	3	2	
232011	56	46	36	14	11	9	18	8	6	3	2	17	8	5	3	2	
232018	56	46	36	14	11	9	33	18	10	6	5	33	16	9	6	5	
-232811	8	72	56	44	18	14	24	12	9	4	3	17	8	5	3	2	
-233311	108	90	68	54	22	17	30	15	11	5	4	17	8	5	3	2	
233318	108	90	68	54	22	17	60	30	18	11	8	33	16	9	6	5	
234011	136	114	86	68	29	21	39	20	14	6	5	17	8	5	3	2	
234023	136	114	86	68	29	21	100	54	30	18	15	44	21	13	9	6	
36011	216	180	134	54	45	33	54	28	20	10	8	17	8	5	3	2	
-314011	204	171	129	51	42	21	39	20	14	6	5	26	12	7	4	3	
-314014	204	171	129	51	42	21	55	28	17	12	7	32	18	10	7	4	
-314018	204	171	129	51	42	21	78	40	22	15	11	51	24	15	9	6	
-314023	204	171	129	51	42	21	100	54	30	18	15	68	33	20	12	9	
A-316011	324	270	204	108	90	34	60	30	20	10	8	24	12	7	4	3	
A-316018	324	270	204	108	90	34	108	56	32	22	16	48	24	15	9	6	
MA-606020	432	360	204	162	135	132	108	56	32	22	16	108	56	32	22	16	

	THREAD TABLE						
Code	1	2	3	4	5		
ISO 965/I	M20	M25	M32	M40	M50		
ASA B2.1	1⁄2" NPT	3⁄4″ NPT	1" NPT	11⁄4" NPT	11⁄2″ NPT		

ACCESSORIES

1. MOUNTING LOOPS

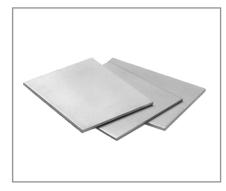
2. HINGES

3. MOUNTING PLATE

EXPLOSION	PROTECTION					
Marking (EN 60079-0)	II 2G Ex e IIC T6÷T4 Gb II 2D Ex tb IIIC T85°C/T100°C/T135°C Db					
Certificates	TC RUC-DE.MIO62.B.04799, TC RUC-DE.BE02.B.00173 IBExU 14ATEX 1028U, IBExU 07ATEX 1147U IECEx IBE 14.0004U 6 IECEx IBE 09.0018U					
SPECIFIC	CATIONS					
Material	aluminum die casting DIN EN 1706 EN AC-AlSi 12 (Fe)					
Color	RAL 7001, powder-coated silver white					
Gasket	Silicone					
Ingress protection (EN 60079-0)	IP 66					
Mechanical strength (EN 60079-0)	7 J					

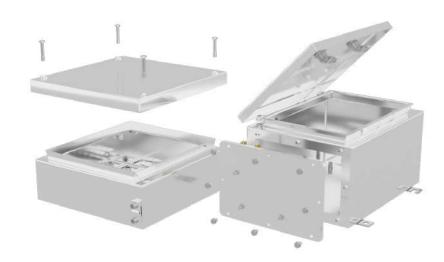
Преимущества

- * Long Lifetime
- * Sea water resistance
- * Increased corrosion resistance

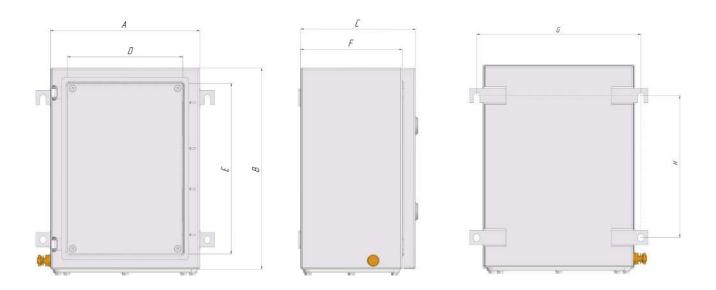

* An alloy of iron and chromium gives the

surface a protective layer that is resistant

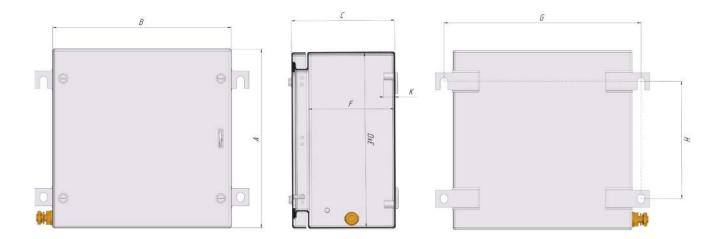
to mechanical and chemical


* Possibility of installation removable

flanges


Steel AISI 316L – structural cryogenic austenitic steel has the ability to maintain the integrity of the structure with increasing and decreasing temperatures

Equipment enclosures are stainless steel, the most suitable material for equipment with maximum environmental protection. An additional advantage is that these products are ideal for heat-resistant (refractory) systems and, when mounted with ceramic terminals, meet the requirements of IEC-331 (exposure to +750°C for 3 hours). The convenience of using removable flanges for installing cable glands is that one enclosure size can be used in various electric circuit units; it is enough to replace the flanges with the perforation corresponding to this unit. Removable flanges can be installed on any of the four perimeters of the box or all edges simultaneously

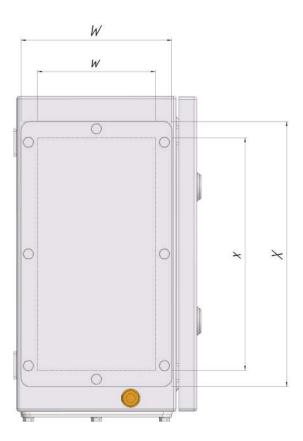


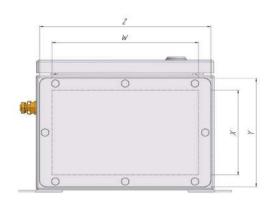
STANDARD SERIES

TB SERIES

Enclosure code	Fig.	Α	В	с	[D	E	F	G	н	к
SIMS-121208	I	120	120	80		126	126	87	145	70	100
SIMS-151208	I	120	150	80		126	156	87	145	100	100
SIMS-151509	I	150	150	90		156	156	97	175	130	100
SIMS-151909	I	150	190	90		156	196	97	175	130	140
SIMS-191910	I	190	190	100		196	196	107	215	140	170
SIMS-231513		229	152	133	Ì	93	176	110	178/208	152	11
SIMS-252512	I	250	250	120	Ì	256	256	127	275	200	230
SIMS-262615	11	260	260	150		201	207	127	286/316	170	11
SIMS-262620	Ш	260	260	200		201	207	177	286/316	170	11
SIMS-313115	11	306	306	150		247	253	127	332/362	203	11
SIMS-313120	Ш	306	306	200		247	253	177	332/362	203	11
SIMS-352615	Ш	350	260	150		201	297	127	286/316	247	11
SIMS-352620	11	350	260	200		201	297	177	286/316	247	11
SIMS-381612	I	380	160	120		386	166	127	405	330	140
SIMS-402512	l	400	250	130		406	256	137	425	350	230
SIMS-403015	11	400	300	150		241	347	127	326/356	247	11
SIMS-403020	11	400	300	200		241	347	177	326/356	247	11
SIMS-463815	11	458	382	150		323	405	127	408/438	305	11
SIMS-463820	II	458	382	200		323	405	177	408/438	305	11
SIMS-484815		480	480	150		421	427	127	506/536	327	11
SIMS-484820		480	480	200		421	427	177	506/536	327	11
SIMS-553515		550	350	150		291	497	127	376/406	350	11
SIMS-553520	11	550	350	200		291	497	177	376/406	350	11
SIMS-624515	11	620	450	150		391	567	127	476/506	420	11
SIMS-624520	II	620	450	200		391	567	177	476/506	420	11
SIMS-765115	П	762	508	150		449	709	127	534/564	508	11
SIMS-765120	II	762	508	200		449	709	177	534/564	508	11
SIMS-916115	II	914	610	150		551	861	127	636/666	559	11
SIMS-916120	II	914	610	200		551	861	177	636/666	559	11
SIMS-987420	11	980	740	200		681	927	177	766/796	625	11

SIZE RANGE




SIZE RANGE

Enclosure code	
SIMS-231513	7
SIMS-262615	7
SIMS-262620	
SIMS-313115	
SIMS-313120	
SIMS-352615	
SIMS-352620	
SIMS-403015	
SIMS-403020	
SIMS-463815	
SIMS-463820	
SIMS-484815	
SIMS-484820	
SIMS-553515	
SIMS-553520	
SIMS-624515	
SIMS-624520	
SIMS-765115	
SIMS-765120	
SIMS-916115	
SIMS-916120	
SIMS-987420	

	d	е	f			
1	100	177	100	146		
1	117	208	117	254		
	167	204	167	250		
1	117	254	117	300		
1	167	250	167	296		
1	117	298	117	254		
]	167	294	167	250		
]	117	348	117	294		
	167	344	167	290		
	117	406	117	376		
	167	402	167	372		
]	117	428	117	474		
	167	424	167	470		
]	117	498	117	344		
]	167	494	167	340		
	117	568	117	444		
	167	564	167	440		
	117	2×345	117	502		
	167	2×341	167	498		
	117	2×421	117	604		
]	167	2×417	167	600		
]	167	2×450	167	2×353		

w	x	у	z		
64	247	64	116		
81	178	81	224		
131	168	131	214		
81	224	81	270		
131	214	131	260		
81	268	81	224		
131	258	131	214		
81	318	81	264		
131	308	131	254		
81	376	81	346		
131	366	131	336		
81	398	81	444		
131	388	131	434		
81	468	81	314		
131	458	131	304		
81	538	81	414		
131	528	131	404		
81	2×315	81	472		
131	2×305	131	462		
81	2×391	81	574		
131	2×381	131	564		
131	2×414	131	2×317		

MAXIMUM NUMBER OF TERMINALS AND CABLE GLANDS

		Terminal cross-section					Side A/B						Side C/D						
Enclosure code	Fig.	2,5	4	6	10	16	35	1	2	3	4	5		1	2	3	4	Τ	
SIMS-121208	I	17	14	11	8	7		6	3	2	2			4	2	1	1	Ī	
SIMS-151208	I	23	19	14	11	9		6	3	2	2			6	2	2	1	t	
SIMS-151509	I	23	19	14	11	9		8	3	3	2	1		6	2	2	2	t	
SIMS-151909	I	30	25	20	15	13		8	3	3	2	1		0	3	3	2	t	
SIMS-191910	I	30	25	20	15	13		10	8	3	3	2		8	6	3	2	t	
SIMS-231513	11	26	21	16	13	10	7	2	2	1	1			3	2	2	2	t	
SIMS-252512	I	84	70	54	44	18		12	10	8	3	3		2	10	8	3	t	
SIMS-262615	11	62	26	19	15	12	9	9	4	3	3	2		7	3	2	2	t	
SIMS-262620	П	62	26	19	15	12	9	14	12	6	5	2		1	9	4	4	t	
SIMS-313115	П	80	66	50	20	16	12	11	5	4	3	3		9	4	3	3	t	
SIMS-313120	П	80	66	50	20	16	12	17	14	8	6	3		4	12	6	5	t	
SIMS-352615	П	62	52	38	30	12	9	9	4	3	3	2		1	5	4	3	t	
SIMS-352620	П	62	52	38	30	12	9	14	12	6	5	2		7	14	7	6	t	
SIMS-381612	I	68	57	44	35	29		30	16	10	6	4		2	6	4	2	t	
SIMS-402512	I	144	120	92	74	60		30	16	10	6	4		8	10	8	3	t	
SIMS-403015	П	117	96	48	38	32	11	11	5	4	3	3		3	6	5	4	t	
SIMS-403020	П	117	96	48	38	32	11	17	14	7	6	3	Ĩ	20	17	9	7	t	
SIMS-463815	П	216	138	102	54	44	17	15	6	5	4	4		6	7	6	5	t	
SIMS-463820	П	216	138	102	54	44	17	23	18	10	8	4	Ĩ	24	21	11	9	t	
SIMS-484815	11	296	186	138	111	62	46	19	8	7	6	5		7	7	6	5	t	
SIMS-484820	11	296	186	138	111	62	46	29	24	13	11	5	2	26	21	12	10	t	
SIMS-553515	П	192	160	120	72	60	30	13	6	5	4	3	Ĩ	20	9	7	6	t	
SIMS-553520	11	192	160	120	72	60	30	20	17	9	7	3	3	0	26	14	12	t	
SIMS-624515	П	325	270	164	132	78	40	18	8	6	5	4	Ĩ	24	10	9	7	t	
SIMS-624520	II	325	270	164	132	78	40	27	23	12	10	4		86	30	17	14	t	
SIMS-765115	II	546	384	240	196	128	72	21	9	7	6	5		26	12	10	8	t	
SIMS-765120	II	546	384	240	196	128	72	32	26	14	12	5		10	34	18	14	t	
SIMS-916115	II	792	560	434	300	200	120	25	11	9	8	6		4	14	12	10	t	
SIMS-916120	II	792	560	434	300	200	120	38	33	18	15	6		52	42	24	20	t	
SIMS-987420	11	1143	792	546	378	255	152	42	36	20	16	6		54	48	26	22	t	

	THREAD TABLE						
Code	1	2	3	4	5		
ISO 965/I	M20	M25	M32	M40	M50		
ASA B2.1	1⁄2″ NPT	3⁄4″ NPT	1" NPT	11⁄4" NPT	11⁄2″ NPT		

ACCESSORIES

1. PLATE HOLDER

2. LOCK SYSTEMS

3. MOUNTING PLATE

4. GROUND BOLTS

5. FLANGE PANEL

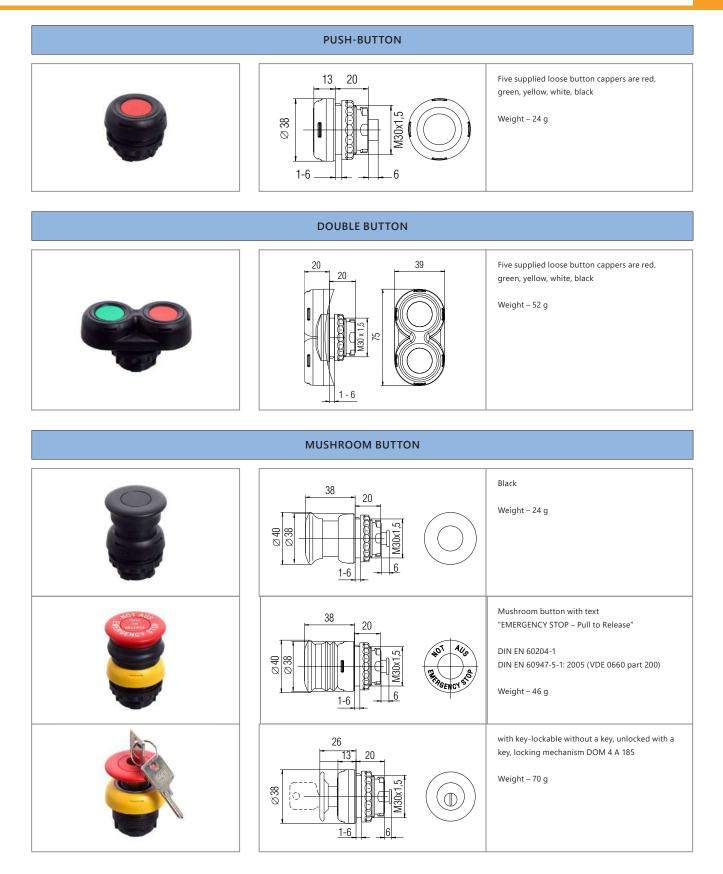
6. MOUNTING KIT

www.sigma-industries.kz

CONTROLS

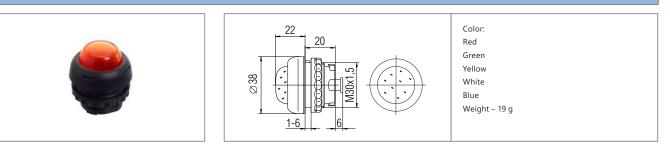
CONTROL CAPPINGS

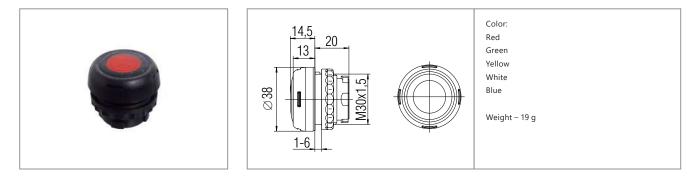
All cappings are made of high-quality thermoplastic and comply with the degree of protection IP 66/IP 67.


The cappings are valuable accessories to label holders, marking clips, metal safety collars, wrenches, etc. Cappings for increased oil resistance are also available.

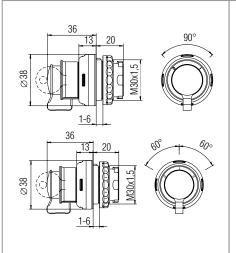
Control cappings are quickly and easily mounted on control panels. Cappings certified for use in Zones 1 and 21.

EXPLOSION	PROTECTION
Marking (EN 60079-0)	ll 2G E x e llC Gb ll 2D Ex tb llIC Db
SPECIFIC	CATIONS
Certificates	Installation in enclosures with wall thicknesses from 1 mm to 6 mm (thread M30x1.5). Suitable for through holes 30.3+0.3 mm
Material	Thermoplastic enclosure
Color	RAL 7001, powder-coated silver white
Ambient temperature operation	-55°C ~ +70°C
Ingress protection (EN 60079-0)	IP 66
Mechanical strength (EN 60079-0)	7 Nm (light cappings 4 Nm)



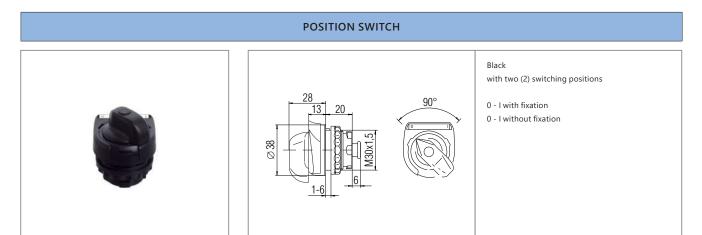


LIGHT MODULE CAPPER



CAPPER FOR BUTTON WITH ILLUMINATION

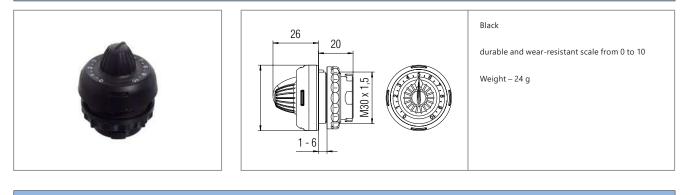
KEY SWITCH

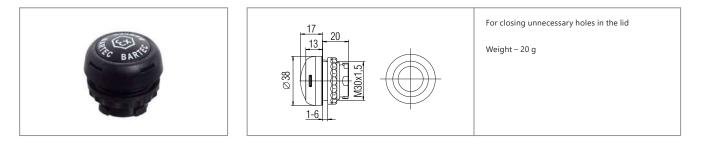

Locking mechanism RONIS 455,

- with 2 or 3 switching positions, rotated by 90°
- 0 I with fixation, the key is retrieved

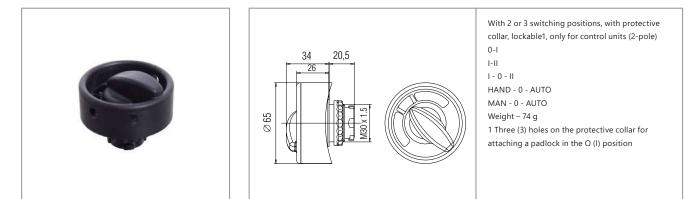
0 - I without fixation, Item I - the key is not retrieved

I - 0 - II (I + II with fixation), the key is retrieved


Weight – 49 g

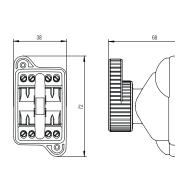


POSITION SWITCH Black with three (3) switching positions I - 0 - II (I + II with fixation) Ø 20 13 I - 0 - II (I + II without fixation) \emptyset 38 **VI30X1** I - 0 - II (I with fixation + II without fixation) I - 0 - II (I without fixation + II with fixation) Weight – 33 g


CAPPER FOR POTENTIOMETER

BLIND CAPPER

POSITION SELECTOR



CONTROLS

SWITCH MODULE

Explosion protection II 2G Ex de IIC Gb

l M2 Ex de l Mb Enclosure material

thermoplastic

Ambient temperature -55°Сдо+60°С

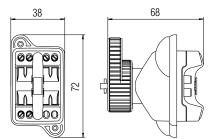
Ingress protection Terminals IP 20 (IEC 60529)

Rated galvanic isolation voltage 300 V

Conventional thermal current 16 A/+40°C, 11 A/+60°C

Mechanical durability >10⁵ switching

Contacts


Forced opening (self-cleaning)

- 1 normally closed and 1 normally open
- 2 normally closed

2 normally open

POTENTIOMETER MODULE

Explosion protection II 2G Ex de IIC Gb

l M2 Ex de l Mb Enclosure material

thermoplastic

Ambient temperature -55°Сдо+60°С

Rated galvanic isolation voltage 500 V

Max. measurable operating voltage AC/DC 230 V

Power consumption

max. 1 W for Ta < +40°C Resistance material

carbon layer on the ceramic

Turn zone mech. 285° -5° electr. action approx. 250°

Torque (start) 0.5 to 1.5 Ncm

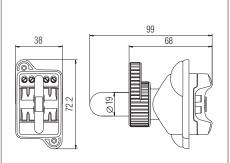
Torque (stop) > 100 Ncm

Mechanical durability 25000 sine cycles

Resistance values

1 kΩ 2,2 kΩ

4,7 kΩ 10 kΩ


Resistance tolerance

± 20 %

LIGHT MODULE

Explosion protection II 2G Ex de IIC Gb I M2 Ex de I Mb

Enclosure material

thermoplastic Ambient temperature - 55°C ~ +50°C (+60°C AC/DC 12 to 24 V)

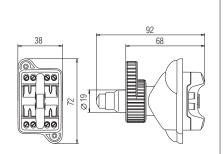
Ingress protection

Terminals IP 20 (IEC 60529)

Rated galvanic isolation voltage 300 V

Rated supply voltage AC 12 V to 250 V (Ta < +50°C) DC 12 V to 60 V (Ta < +50°C) AC/DC 12 V to 24 V (Ta < +60°C)

Power consumption ≤1 Watt


Electrcal life

>105 light hours Light source

LED, light angle 180° red, green, yellow, white, blue

MODULE FOR BUTTON WITH ILLUMINATION

Explosion protection II 2G Ex de IIC Gb I M2 Ex de I Mb

Enclosure material thermoplastic

Ambient temperature - 55°C ~ +50°C (+60°C AC/DC 12 to 24 V)

Ingress protection Terminals IP 20 (IEC 60529)

Rated galvanic isolation voltage 300 V

Rated supply voltage

AC 12 V to 250 V (Ta < +50°C) DC 12 V to 60 V (Ta < +50°C) AC/DC 12 V to 24 V (Ta < +60°C)

Power consumption ≤1 Watt

Electrical life: >10⁵light hours

Mechanical durability >10⁵switching

Contacts Forced opening (self-cleaning) 1 normally closed and 1 normally open

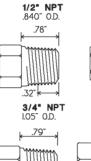
Light source LED, light angle 180° red, green, yellow, white, blue

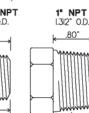
CABLE GLANDS

SIGMA INDUSTRIES offers certified components for a secure connection to complement our wide range of enclosures. These include standard brass, plastic, and stainless steel cable glands for industrial and hazardous area applications, stopper plugs, pressurizers, and accessories such as nuts, seals, and earth rings.

CABLE GLANDS FOR EXPLOSIVE ATMOSPHERES

In general, cable glands intended for use in explosive atmospheres must first comply with any applicable industrial installation standards, such as IEC 62444, followed by the requirements of IEC 60079-0.

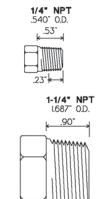

In addition, cable glands can be equipped with basic types of protection when used in explosive atmospheres according to the requirements of IEC 60079 standards applicable to armored and unarmoured cables.


BENEFITS

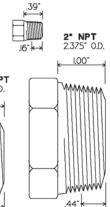
- * Proven installation technology
- * Wide choice of materials, sizes, and crimping ranges
- * Tolerances according to the latest standards
- * High heat resistance

Rated diameter, inch	Main diameter, mm	Threaded hole, mm	Number of turns per inch	Pitch, mm
	Three	ad NPT (ANSI/ASME B 1.	20.1)	
NPT 1/8"	10.217	8.25	27	0.940
NPT 1/4"	13.577	10.70	18	1.411
NPT 3/8"	17.016	14.10	18	1.411
NPT 1/2"	21.211	17.40	14	1.814
NPT 3/4"	26.566	22.60	14	1.814
NPT 1"	33.195	28.50	11.5	2.209
NPT 1 1/4"	41.952	37.00	11.5	2.209
NPT 2"	60.060	55.00	11.5	2.209

Rated diameter, inch	Threaded hole, mm	Number of turns per inch	Pitch, mm
Metr	ic (ISO 965-1,	ISO 965-3)	
M10	8.5	16.93	1,5
M12	10.5	16.93	1,5
M16	14	16.93	1,5
M20	18.5	16.93	1,5
M25	23.5	16.93	1,5
M32	30.5	16.93	1,5
M40	38.4	16.93	1,5
M50	48.4	16.93	1,5



3/8" NPT .680⁻ 0.D.


.24"

40"

.59

.42"

1/8" NPT .405" O.D.

Triton CDS

CMP Triton CDS Type T3CDS Certified Triple Fire Protection (Type "d"), Enhanced Safety (Type "e") and for environments with restricted gas passage (Type "nR") Cable Glands for indoor and outdoor use with an explosive atmosphere in Zone 1, Zone 2, Zone 21 and Zone 22.

Unique Compensating Displacement Seal System (CDS) compatible with all cable types. The CDS system protects the inner sheath from increased forces transmitted and compensated by the internal compensator built into the CDS system at a vital cable sealing point. This allows the cable gland always to be tightly tightened on the cable, regardless of its diameter.

Practical installation benefits

- Fully sequential three-step installation procedure

- Quick and easy assembly, metal contacts at all stages of installation

- CMP doesn't aim to make edits as fast as possible but instead ensures that the installation is done right on the first try, as intended

- The concept of correct installation at the first attempt reduces the downtime of the equipment during the installation process and increases the confidence of the installer in the proper action

- Noise absorption levels from electromagnetic interference comply with current European requirements (do not exceed 50 dB when terminating shielded cables)

- Conforms to EU Low Voltage Directive 73/23/EEC

- Available in nickel-plated brass, brass, stainless steel, and aluminum
- Environmental protection of outer cable sheath under IP68 and NEMA 4X
- Provides mechanical cable retention and electrical conductivity through armored wire termination

- The reversible armored cone design and AnyWay universal clamping ring makes it easy to disconnect the cable from the equipment

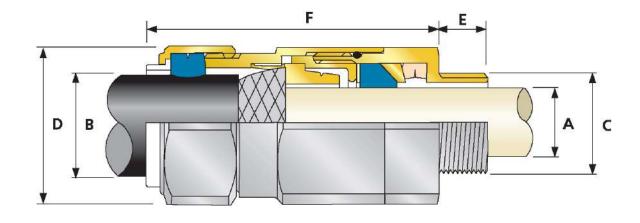
- Flooding protection as standard
- Operating temperature -60 to +130°C or -20 to +200°C
- Quick and easy assembly process with constant face-to-face installation
- The "ready first-time" concept helps to reduce "downtime" during plant installation without presenting any problems for the user
- Regardless of the cable design, the risk of damage to the inner cable sheath is eliminated even if the CDS system is constantly fully tightened
- Uniform hexagonal profile

CDS Internal Fire Seal System

- Unique Compensating Displacement Seal (CDS) system suitable for all cable types

- At the critical sealing point of the cable, the CDS system protects the inner sheath of the cable from the effects of excess forces transmitted to and absorbed by the compensator built into the CDS system.

- Allows secure tightening of metal cable gland connections regardless of cable diameter

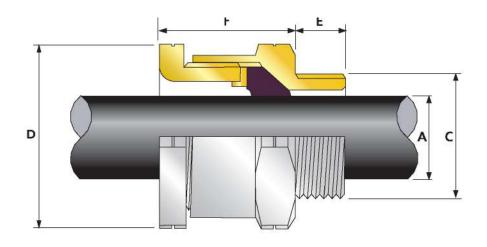

Triton CDS

Explosion-proof cable gland according to international standards

For all types of armored cables

- Fully sequential three-step installation procedure
- Reduces installation time, costs, and risks
- Suitable for indoor and outdoor installation
- Unique Compensating Displacement Seal System (CDS)
- Permanent metal connection regardless of cable diameter
- Designed to reduce plastic deformation
- Internal seal against moisture ingress
- Adjustable outer seal with heavy-duty technology
- Unique OSTG series avoids constriction
- -60°C to +130°C (standard), -20°C to 200°C (ThermEx option)
- International marking: IECEx, ATEX, UL, and cCSAus
- Excellent electromagnetic performance

					Inner	sheath	Cable	outer		Armori	ng range		s	rs.	ء
Cable gland	А	vailable th	read type	с	-	diameter A diameter B		Fluted cone		Stepped cone		n edges	corners	ו length	
size	Metre	Thread length	NPT	Thread length	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	D between	D between	Protrusion
20516	M20	15.0	1/2"	19.9	3.1	8.6	6.1	13.1	0.3	1.0	0.8	1.25	24.0	26.4	78.7
205	M20	15.0	1/2″	19.9	6.1	11.6	9.5	15.9	0.3	1.0	0.8	1.25	24.0	26.4	78.7
20	M20	15.0	1/2″	19.9	6.5	13.9	12.5	20.9	0.4	1.0	0.8	1.25	30.5	33.6	76.2
25S	M25	15.0	3/4"	20.2	11.1	19.9	14.0	22.0	0.4	1.2	1.25	1.6	37.5	41.3	88.8
25	M25	15.0	3/4"	20.2	11.1	19.9	18.2	26.2	0.4	1.2	1.25	1.6	37.5	41.3	88.7
32	M32	15.0	1"	25.0	17.0	26.2	23.7	33.9	0.4	1.2	1.6	2.0	46.0	50.6	90.7
40	M40	15.0	1 1⁄4″	25.6	22.0	32.1	27.9	40.4	0.4	1.6	1.6	2.0	55.0	60.5	93.2
50S	M50	15.0	1 1⁄2″	26.1	29.5	38.1	35.2	46.7	0.4	1.6	2.0	2.5	60.0	66.0	100.7
50	M50	15.0	2″	26.9	35.6	44.0	40.4	53.0	0.6	1.6	2.0	2.5	70.1	77.1	105.8



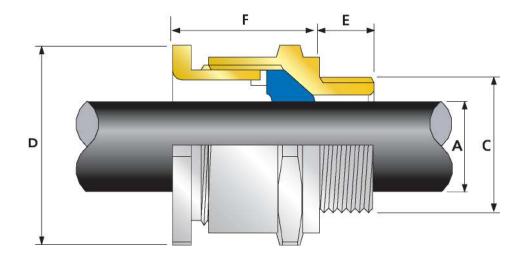
A2F100

Explosion-proof cable gland according to international standards

For all types of unarmoured and braided cables

- Fully compliant with IEC 60079-0 requirements for cable fastening
- There are no special conditions to ensure safe operation
- Certification does not require external cable fixing
- Refractory Bias Seal
- Moisture protection
- -60°C to +130°C
- International marking: IECEx and ATEX
- Supplied with a protective membrane

		Available th	read type C		Inner sheat					
Cable gland size	Metre	Thread length E	NPT	Thread length E	Min.	Max.	D between edges	D between corners	Protrusion length	
20516	M20	15.0	1/2"	19.9	3.2	8.0	24.0	26.4	30.4	
205	M20	15.0	1/2"	19.9	6.5	11.2	24.0	26.4	31.9	
20	M20	15.0	1/2"	19.9	7.0	13.5	27.0	29.7	35.8	
20L	M20	15.0	1/2″	19.9	8.7	14.0	27.0	29.7	34.3	
25	M25	15.0	3/4"	20.2	11.5	19.5	36.0	39.6	40.4	
25L	M25	15.0	3/4"	20.2	14.0	20.0	36.0	39.6	39.9	
32	M32	15.0	1″	25.0	19.0	25.5	41.0	45.1	38.5	
32L	M32	15.0	1″	25.0	20.2	26.3	41.0	45.1	35.5	
40	M40	15.0	1 1⁄4″	25.6	25.0	32.2	50.0	55.0	38.8	
50S	M50	15.0	1 1⁄2″	26.1	31.0	38.2	55.0	60.5	41.4	
50	M50	15.0	2″	26.9	35.6	44.0	60.0	66.0	45.8	

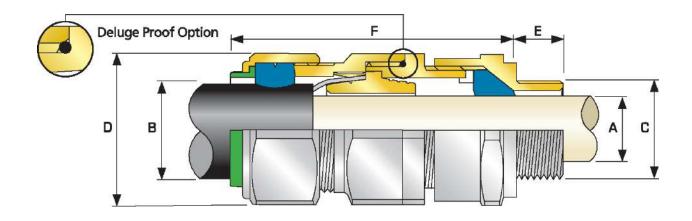

A2F

Explosion-proof cable gland according to international standards

For all types of unarmoured and braided cables

- Refractory Bias Seal
- Moisture protection
- -60°C to +130°C
- International marking: IECEx and ATEX

		Available thr	ead type C		Inner sheat	n diameter A			
Cable gland size	Metre	Thread length E	TAN	Thread length E	Min.	Max.	D between edges	D between corners	Protrusion length
20516	M20	15.0	1/2″	19.9	3.2	8.7	24.0	26.4	26.0
205	M20	15.0	1/2"	19.9	6.1	11.7	24.0	26.4	26.0
20	M20	15.0	1/2"	19.9	6.5	14.0	27.0	29.7	27.7
25	M25	15.0	3/4"	20.2	11.1	20.0	36.0	39.6	35.5
32	M32	15.0	1″	25.0	17.0	26.3	41.0	45.1	35.1
40	M40	15.0	1 1⁄4″	25.6	23.5	32.2	50.0	55.0	35.1
50S	M50	15.0	1 1⁄2″	26.1	31.0	38.2	55.0	60.5	33.0
50	M50	15.0	2″	26.9	35.6	44.0	60.0	66.0	37.3



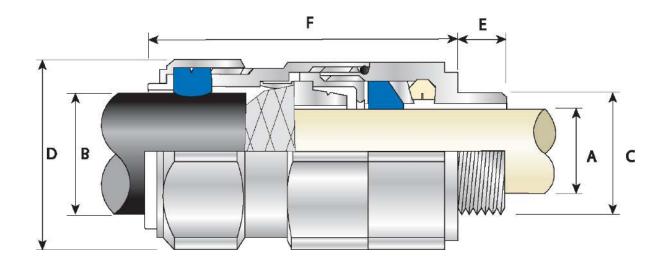
E1FU

Explosion-proof cable gland according to international standards

For all types of armored cables

- Metal-to-metal armor fastening technology
- Suitable for indoor and outdoor installation
- Refractory Internal Bias Seal
- Adjustable outer seal with heavy-duty technology
- Unique OSTG series avoids constriction
- -60°C to +130°C
- International markings: IECEx, ATEX, and cCSAus
- Excellent electromagnetic performance

	A	vailable th	read type	c		sheath eter A		outer eter B	Armori	ng range			
Cable gland size	Metre	Thread length E	NPT	Thread length E	Min.	Max.	Min.	Max.	Min.	Max.	D between edges	D between corners	Protrusion length
20S16	M20	15.0	1⁄2"	19.9	3.1	8.6	6.1	13.1	0.3	1.0	0.8	1.25	24.0
205	M20	15.0	1⁄2"	19.9	6.1	11.6	9.5	15.9	0.3	1.0	0.8	1.25	24.0
20	M20	15.0	1⁄2"	19.9	6.5	13.9	12.5	20.9	0.4	1.0	0.8	1.25	30.5
255	M25	15.0	3⁄4"	20.2	11.1	19.9	14.0	22.0	0.4	1.2	1.25	1.6	37.5
25	M25	15.0	3⁄4"	20.2	11.1	19.9	18.2	26.2	0.4	1.2	1.25	1.6	37.5
32	M32	15.0	1"	25.0	17.0	26.2	23.7	33.9	0.4	1.2	1.6	2.0	46.0
40	M40	15.0	1 1⁄4"	25.6	22.0	32.1	27.9	40.4	0.4	1.6	1.6	2.0	55.0
50S	M50	15.0	1 1⁄2"	26.1	29.5	38.1	35.2	46.7	0.4	1.6	2.0	2.5	60.0
50	M50	15.0	2"	26.9	35.6	44.0	40.4	53.0	0.6	1.6	2.0	2.5	70.1

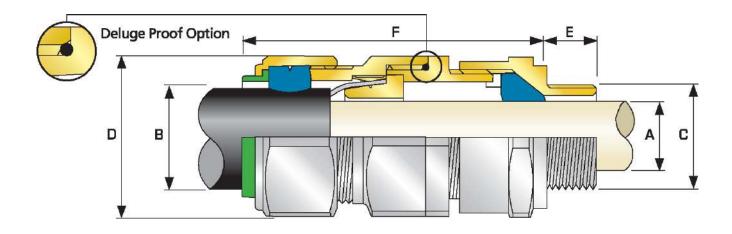

TE1FU

Explosion-proof cable gland according to international standards

For all types of armored cables

- Compact stainless-steel structure
- Fully sequential three-step installation procedure
- Reduces installation time, costs, and risks
- Suitable for indoor and outdoor installation
- Unique Compensating Displacement Seal System (CDS)
- Metal connection regardless of cable inner sheath diameter
- Internal seal against moisture ingress
- Adjustable outer seal with heavy-duty technology
- Unique OSTG line avoids constriction
- -60°C to +130°C
- International markings: IECEx, ATEX, and cCSAus
- -Excellent electromagnetic performance

	А	vailable th	read type	с	-	sheath eter A		outer eter B	Armori	ng range		D	
Cable gland size	Metre	Thread length E	NPT	Thread length E	Min.	Мах.	Min.	Мах.	Min.	Мах.	D between edges	between corners	Protrusion length
20516	M20	15.0	1/2″	19.9	3.1	8.6	6.1	13.1	0.3	1.0	0.8	1.25	24.0
205	M20	15.0	1⁄2″	19.9	6.1	11.6	9.5	15.9	0.3	1.0	0.8	1.25	24.0
20	M20	15.0	1⁄2″	19.9	6.5	13.9	12.5	20.9	0.4	1.0	0.8	1.25	30.5
255	M25	15.0	3/4"	20.2	11.1	19.9	14.0	22.0	0.4	1.2	1.25	1.6	37.5
25	M25	15.0	3/4"	20.2	11.1	19.9	18.2	26.2	0.4	1.2	1.25	1.6	37.5
32	M32	15.0	1″	25.0	17.0	26.2	23.7	33.9	0.4	1.2	1.6	2.0	46.0
40	M40	15.0	1 1⁄4″	25.6	22.0	32.1	27.9	40.4	0.4	1.6	1.6	2.0	55.0
50S	M50	15.0	1 1⁄2″	26.1	29.5	38.1	35.2	46.7	0.4	1.6	2.0	2.5	60.0
50	M50	15.0	2″	26.9	35.6	44.0	40.4	53.0	0.6	1.6	2.0	2.5	70.1



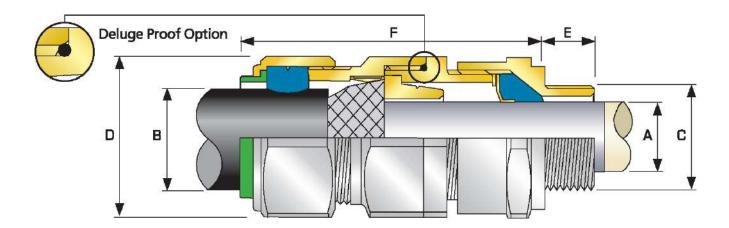
E1FW

Explosion-proof cable gland according to international standards

For all types of armored cables

- Metal-to-metal armor fastening technology
- Suitable for indoor and outdoor installation
- Refractory Internal Bias Seal
- Adjustable outer seal with heavy-duty technology
- Unique OSTG series avoids constriction
- -60°C to +130°C
- International markings: IECEx, ATEX, and cCSAus
- Excellent electromagnetic performance

	μ	vailable th	iread type	с		sheath eter A		outer eter B	Armori	ng range		D between corners	Protrusion length
Cable gland size	Метр.	Длина резьбы "Е"	NPT	Длина резьбы "Е"	Мин	Макс	Мин	Макс	Мин	Макс	D between edges		
20516	M20	15.0	1/2"	19.9	3.1	8.6	6.1	13.1	0.8	1.25	24.0	26.4	72.5
205	M20	15.0	1/2"	19.9	6.1	11.6	9.5	15.9	0.8	1.25	24.0	26.4	70.0
20	M20	15.0	1⁄2″	19.9	6.5	13.9	12.5	20.9	0.8	1.25	30.5	33.6	73.0
255	M25	15.0	3/4"	20.2	11.1	19.9	14.0	22.0	1.25	1.6	37.5	41.3	89.0
25	M25	15.0	3/4"	20.2	11.1	19.9	18.2	26.2	1.25	1.6	37.5	41.3	89.0
32	M32	15.0	1"	25	17.0	26.2	23.7	33.9	1.6	2.0	46.0	50.6	86.0
40	M40	15.0	1 1⁄4″	25.6	22.0	32.1	27.9	40.4	1.6	2.0	55.0	60.5	90.0
50S	M50	15.0	1 1⁄2″	26.1	29.5	38.1	35.2	46.7	2.0	2.5	60.0	66.0	91.0
50	M50	15.0	2″	26.9	35.6	44.0	40.4	53.0	2.0	2.5	70.1	77.1	95.0

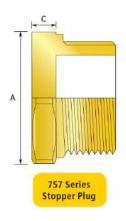

E1FX

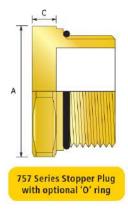
Explosion-proof cable gland according to international standards

For cables with braid and steel tape armor

- Metal-to-metal armor fastening technology
- Suitable for indoor and outdoor installation
- Refractory Internal Bias Seal
- Adjustable outer seal with heavy-duty technology
- Unique OSTG line avoids constriction
- -60°C to +130°C
- International markings: IECEx, ATEX, and cCSAus
- Excellent electromagnetic performance

	A	vailable th	read type	c		sheath eter A		outer eter B	Armorii	ng range			Protrusion length
Cable gland size	Metre	Thread length E	NPT	Thread length E	Min.	Max.	Min.	Мах.	Min.	Мах.	D between edges	D between corners	
20516	M20	15.0	1/2"	19.9	3.1	8.6	6.1	13.1	0.3	1.0	24.0	26.4	72.5
205	M20	15.0	1/2"	19.9	6.1	11.6	9.5	15.9	0.3	1.0	24.0	26.4	70.0
20	M20	15.0	1/2"	19.9	6.5	13.9	12.5	20.9	0.4	1.0	30.5	33.6	73.0
255	M25	15.0	3/4"	20.2	11.1	19.9	14.0	22.0	0.4	1.2	37.5	41.3	89.0
25	M25	15.0	3/4"	20.2	11.1	19.9	18.2	26.2	0.4	1.2	37.5	41.3	89.0
32	M32	15.0	1"	25.0	17.0	26.2	23.7	33.9	0.4	1.2	46.0	50.6	86.0
40	M40	15.0	1 1⁄4″	25.6	22.0	32.1	27.9	40.4	0.4	1.6	55.0	60.5	90.0
50S	M50	15.0	1 1⁄2″	26.1	29.5	38.1	35.2	46.7	0.4	1.6	60.0	66.0	91.0
50	M50	15.0	2″	26.9	35.6	44.0	40.4	53.0	0.6	1.6	70.1	77.1	95.0



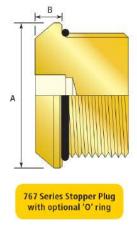


HEXAGON STOPPER PLUG

International standards-compliant accessory for explosion-proof cables and conduits

- Serves to block unused cable glands
- It can be used as a temporary or permanent gland blocker
- Available in general and industrial versions
- There is a contact surface for O-rings
- Nylon version only available with Ex e certification (-20 °C to +60 °C)
- -60°C to 200°C (metal)
- International markings: IECEx, ATEX, cCSAus, and UL

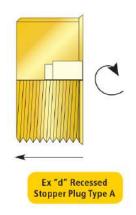
Thread size	Minimum thread length	Distance between opposite faces A	Diameter between opposite corners	Protrusion length C
M16 X 1.5	15.0	22.0	24.2	5.0
M20 X 1.5	15.0	24.0	26.4	5.0
M25 X 1.5	15.0	30.0	33.0	5.0
M32 X 1.5	15.0	36.0	39.6	5.0
M40 X 1.5	15.0	46.0	50.6	5.0
M50 X 1.5	15.0	55.0	60.5	5.0

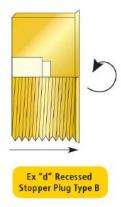

FLAT-CONVEX STOPPER PLUG

International standards-compliant accessory for explosion-proof cables and conduits

- Serves to block unused cable glands
- It can be used as a temporary or permanent gland blocker
- Available in general and industrial versions
- There is a contact surface for O-rings
- Nylon version only available with Ex e certification (-20 $^\circ C$ to +60 $^\circ C)$
- -60°C to 200°C (metal)
- International markings: IECEx, ATEX, cCSAus, and UL

Thread size	Minimum thread length	Head diameter A	Protrusion length B	Hex wrench size A/F
M16 X 1.5	15.0	22.0	5.5	M8
M20 X 1.5	15.0	27.0	5.5	M10
M25 X 1.5	15.0	30.0	5.5	M10
M32 X 1.5	15.0	36.0	5.5	M10
M40 X 1.5	15.0	46.0	5.5	M10
M50 X 1.5	15.0	55.0	5.5	M10



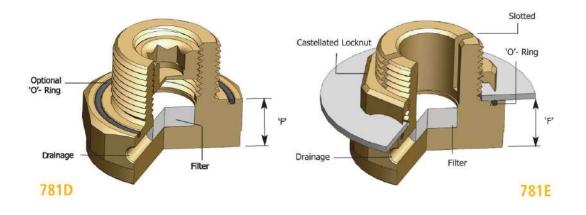


TRUNCATED CAP

- Serves to block unused cable glands
- It can be used as a temporary or permanent solution
- Vandal-resistant version available (Type B)
- General and industrial versions are available
- Nylon version only available with Ex e certification (-20 °C to +60 °C)
- -60°C to 200°C (metal)
- International markings: IECEx, ATEX, cCSAus, and UL

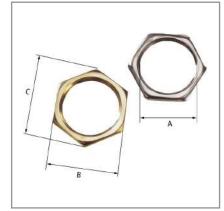
Explosion protection marking II 2G Ex db IIC Gb, Ex eb IIC Gb, II 1D Ex ta IIIC Da IM 2 Ex db I Mb, Ex eb I Mb

Thread size	Minimum thread length	Hex key size, A/F
M16 X 1.5	15.0	M8
M20 X 1.5	15.0	M10
M25 X 1.5	15.0	M10
M32 X 1.5	15.0	M10
M40 X 1.5	15.0	M10
M50 X 1.5	15.0	M10



DRAIN STOPPER PLUG International standards-compliant accessory for explosion-proof cables and conduits

- 781E for Ex e environment
- 781D for Ex d environment
- Designed to drain the liquid in devices that accumulate moisture
- Provides air circulation in the equipment
- Versions available for general and industrial versions
- Nylon version only available with Ex e certification (-20 °C to +60 °C)
- -60°C to 130°C (metal)
- International markings: IECEx, ATEX, and cCSAus

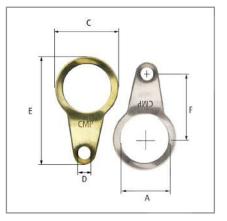




Thread size	Minimum thread length	Protrusion length F	Distance from one edge to the opposite	Distance between corners	Maximum Tightening Torque (NM)
M20 x 1.5	15.0	12.7	30.0	33.0	7
M25 x 1.5	15.0	12.7	36.0	39.6	10
1⁄2″ NPT	19.9	12.7	30.0	33.0	7
³⁄4″ NPT	20.2	12.7	36.0	39.6	10

Thread Diameter	Min. thickness	Distance B	Distance C
	Me	etric	
M16 X 1,5	3,2	22	25.4
M16 X 1,5	5.0	22.0	25.4
M20 X 1,5	3,2	24	27.7
M20 X 1.5	5.0	24.0	27.7
M25 X 1,5	3,2	30	34.6
M25 X 1.5	5.0	30.0	34.6
M32 X 1,5	3,2	36	41,6
M32 X 1.5	5.0	36.0	41,6
M40 X 1,5	4,8	46	53.1
M50 X 1,5	6.3	55	63.5
	Ν	PT	·
1/2" NPT	4.8	27	31.2
3/4" NPT	4.8	33	38.1
1" NPT	4.8	41	47.3
1 1/4" NPT	4.8	50	57.7
1 1/2" NPT	5.0	60.0	69.3
2" NPT	5.0	75	88.6

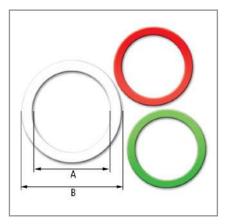
WAVY WASHER


JAM NUT

Diameter A	Min. thickness	Outer Diameter B	Diameter A	Min. thickness	Outer Diameter B
M16	3.9	25.5	1/2" NPT	3.9	32.5
M20	3,9	32.5	3/4" NPT	3.9	40.0
M25	3,9	40.0	1" NPT	3.9	43.5
M32	3,9	43.5	1 1/4" NPT	3.9	64,5
M40	3,9	64,5	1 1/2" NPT	3.9	80.0
M50	3,9	80.0	2" NPT	3.9	100.0

They are made of stainless steel. These vibration-resistant washers are installed inside the equipment before the jam nut and act as an anti-vibration device to prevent accidental unscrewing of the cable gland or the cable gland and jam nut during operation.

According to paragraph 6.4.1 of IEC 60079-14, unintentional loosening of the fastener must be avoided. Relative vibrations can cause this over a long period without vibration and thermal effects of varying temperatures caused by temperature variations or dissimilar clamping materials.



GROUNDING RINGS

Diameter A	Min. thickness	Rated diameter C	Hole size D	Rated length E	Rated centers F	
	Metric					
M16	1,3	25,4	M6	50,4	30.2	
M20	1,3	27.1	M6	52.3	33.1	
M25	1,5	35,1	M6	59,2	35,6	
M32	1,5	45,2	M12	77	43,1	
M40	1,5	53,7	M13	88,7	45,4	
M50	1,5	65,2	M13	111.2	58,1	
	NPT					
1/2 NPT	1.3	27.1	M6	52.9	33.1	
3/4 NPT	1.5	35,1	M6	59,2	35.6	
1 NPT	1.5	45,2	M12	77	43.1	
1 1/4 NPT	1.5	53,7	M13	88,7	45.4	
1 1/2 NPT	1.5	65,2	M13	111.2	58.1	
2 NPT	1.5	82,6	M13	128.7	66.8	

SEALING WASHER FOR INPUT THREAD

Diameter A	Min. thickness	Outer Diameter B
	Metric	
M16	2.0	25.8
M20	2.0	28.3
M25	2.0	34.45
M32	2.0	44.2
M40	2.0	52.8
M50	2.0	64.8
	NPT	
1⁄2″ NPT	2.0	29.65
3⁄4" NPT	2.0	34.4
1" NPT	2.0	44.4
1 ¼" NPT	2.0	55.9
1 ½" NPT	2.0	64.8
2" NPT	2.0	77.6

MANUFACTURING PLANT

REPUBLIC OF KAZAKHSTAN

116A, Azattyk Avenue, Atyrau, 060005 Block O4 , CDC Base Тел.: +7 (7122) 30 60 06 sales@sigmasolutions.kz www.sigma-industries.kz

REPRESENTATIVE OFFICES

REPUBLIC OF KAZAKHSTAN

SIGMA SOLUTIONS LLP

78A, Azattyk Avenue, Atyrau, 060005 Тел.: +7 (7122) 30 60 06 sales@sigmasolutions.kz www.sigmasolutions.kz

UNITED KINGDOM

SIGMA ELECTRICAL EXPORT UK LTD.

Unit 4, Sitwell Business Center Hedge Rd Ind. Est., Ripley, Derbyshire, DE5 3GH Tel.: +44 (0) 1773 746602 sales@sigmaexport.co.uk www.sigmaexport.co.uk

RUSSIAN FEDERATION

SIGMA SOLUTIONS LLC

Office #8, 57A, Boevaya street, Astrakhan, 414024 Tel.: +7 (8512) 994598 sales@sigmasolutions.ru www.sigmasolutions.ru

www.sigma-industries.kz